Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 May 2022 | Story NONSINDISO QWABE | Photo Supplied
Simphiwe Dube
ISRC President Simphiwe Dube.

The president of the ISRC, Simphiwe Dube, left his seat alongside the Convocation and traded his procession regalia for the black gown, as he walked across the stage to receive his qualification during the morning session of the Qwaqwa Campus graduation ceremony on 30 April 2022.

Students, proud parents, and loved ones in the Rolihlahla Mandela Hall ululated and clapped as Dube received his Bachelor of Education degree majoring in Intermediate Phase Teaching, with distinction.

Dube himself revelled in the moment, shouting “amandla” to the overjoyed crowd.

Reflecting on how he managed to balance an impeccable academic record while being fully active in student politics as well as other extracurricular activities on campus, Dube said it was all doable with determination, courage, and selflessness.

“I always knew I wanted to make a difference in one way or another, and I suppose that's why I chose teaching as a profession. Coming to university, I was received by a cloud of activism that changed the way I viewed the world. I suppose that's where my journey in the space began.” 

He said the first duty of a revolutionary was to be educated. “Education should be the bloodline of every true revolutionary; it should be the driving force, and it really is inspirational to end an academic period in a cloud of glory; this itself should be a message.”

Describing himself as keen and goal-driven through academic excellence and leadership skills, Dube shared the following words with the student community: “The true goal is to be educated; the main thing is to get that qualification. We are born to be great from the day we enter the UFS gates, we can only stop at the top. Therefore, we should always anchor ourselves in the true revolutionaries who have sought to emancipate education at every turn.”

Click to view documentView his moment on stage here: 

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept