Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 May 2022 | Story Anthony Mthembu | Photo Supplied
Alina Ntsiapane
Alina Ntsiapane obtained second place in the partners division of the ILRI CapDev Grand Challenge research pitching contest.

Alina Ntsiapane, a PhD student at the University of the Free State, obtained second place in the partners category of the International Livestock Research Institute’s (ILRI) CapDev Grand Challenge research pitching contest, which took place on 13 April 2022. The pitching contest is the first part of the CapDev Grand Challenge, which is a 10-month process aimed at equipping scientists with the necessary skills to contribute to new research. 

Presenting Research to a Tough Panel of Judges 

Ntsiapane was one of 30 contestants who presented their research virtually to a panel of esteemed judges. “It was not easy, it was very challenging for me because it was my first time presenting my PhD study and I had to do it live on an international platform,” expressed Ntsiapane. Although each contestant is thoroughly prepared for their respective presentations, Ntsiapane argues that some of the questions asked by the judges can be quite daunting. “Some of their questions were very challenging and I did not know how to respond to them, but they made me aware of ways in which I needed to improve my research,” she stated. However, regardless of the intensity of the pitching contest, Ntsiapane’s research allowed her to progress to the next stage of the CapDev Grand Challenge. She will be part of the rigorous 10-month training process that will begin in June 2022.

Ntsiapane’s Research Project

Ntsiapane’s PhD research focuses on the production of smallholder wool as a means to improve livelihoods in both Thaba ’Nchu and Botshabelo in the Free State. In fact, in the research Ntsiapane highlights that there has been a significant decline in the production of wool within the last three decades. As such, Ntsiapane believes it is imperative to create spaces that allow for the training of small-scale farmers, so that the production of wool can still be a possibility.
Consequently, Ntsiapane hopes that the 10-month training she will receive from the CapDev Grand Challenge will not only allow her to grow but will assist in opening doors for her. “I’m hoping to get exposure and to make connections with policy makers and the donors as well. This will assist me in achieving my goals,” she explained. 

Future Endeavours After the Training Course

Subsequent to the training course, Ntsiapane would like to utilise that knowledge by continuing to make her most recent project a reality. Ntsiapane is currently working on developing a television show aimed at providing adequate training to small-scale farmers, so that they are equipped with the necessary knowledge and understanding of the industry in which they find themselves. As such, being part of the CapDev Grand Challenge will allow her to learn some of the necessary ways in which this dream could become a reality. 

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept