Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 May 2022 | Story Anthony Mthembu | Photo Supplied
Alina Ntsiapane
Alina Ntsiapane obtained second place in the partners division of the ILRI CapDev Grand Challenge research pitching contest.

Alina Ntsiapane, a PhD student at the University of the Free State, obtained second place in the partners category of the International Livestock Research Institute’s (ILRI) CapDev Grand Challenge research pitching contest, which took place on 13 April 2022. The pitching contest is the first part of the CapDev Grand Challenge, which is a 10-month process aimed at equipping scientists with the necessary skills to contribute to new research. 

Presenting Research to a Tough Panel of Judges 

Ntsiapane was one of 30 contestants who presented their research virtually to a panel of esteemed judges. “It was not easy, it was very challenging for me because it was my first time presenting my PhD study and I had to do it live on an international platform,” expressed Ntsiapane. Although each contestant is thoroughly prepared for their respective presentations, Ntsiapane argues that some of the questions asked by the judges can be quite daunting. “Some of their questions were very challenging and I did not know how to respond to them, but they made me aware of ways in which I needed to improve my research,” she stated. However, regardless of the intensity of the pitching contest, Ntsiapane’s research allowed her to progress to the next stage of the CapDev Grand Challenge. She will be part of the rigorous 10-month training process that will begin in June 2022.

Ntsiapane’s Research Project

Ntsiapane’s PhD research focuses on the production of smallholder wool as a means to improve livelihoods in both Thaba ’Nchu and Botshabelo in the Free State. In fact, in the research Ntsiapane highlights that there has been a significant decline in the production of wool within the last three decades. As such, Ntsiapane believes it is imperative to create spaces that allow for the training of small-scale farmers, so that the production of wool can still be a possibility.
Consequently, Ntsiapane hopes that the 10-month training she will receive from the CapDev Grand Challenge will not only allow her to grow but will assist in opening doors for her. “I’m hoping to get exposure and to make connections with policy makers and the donors as well. This will assist me in achieving my goals,” she explained. 

Future Endeavours After the Training Course

Subsequent to the training course, Ntsiapane would like to utilise that knowledge by continuing to make her most recent project a reality. Ntsiapane is currently working on developing a television show aimed at providing adequate training to small-scale farmers, so that they are equipped with the necessary knowledge and understanding of the industry in which they find themselves. As such, being part of the CapDev Grand Challenge will allow her to learn some of the necessary ways in which this dream could become a reality. 

News Archive

Research helps farmers save with irrigation
2017-02-15

Description: Irrigation research Tags: Irrigation research

Marcill Venter, lecturer in the Department of
Agricultural Economics at the University of the
Free State, has developed the mathematical
programming system, Soil Water Irrigation
Planning and Energy Management in order to
determine irrigation pump hours.
Photo: Rulanzen Martin

Her advice to farmers is that they should make sure they are aware of the total cost (investment and operating costs) of an irrigation system. In most cases the investment cost is low, but the operating cost over the lifetime of the system is high.

“It is very important to have a look at the total cost and to install the most economic system,” says Marcill Venter, lecturer at the University of the Free State (UFS), who has done research on the economic sustainability of water-pipe systems.

Irrigation systems important components for farming
This research comes at a time when many farmers are relying on their irrigation systems due to persistent drought and low rainfall during 2016. South Africa has also experienced an abnormal increase in electricity tariffs in recent years. Due to tariff increases which threaten the future profitability of irrigation producers, the Water Research Commission (WRC) has launched and financed a project on the sustainable management of irrigation farming systems. “I had the opportunity to work on the project as a researcher,” says Venter.

The heart of every irrigation system is the water pipes that bring life to crops and livestock, and this is what Venter’s research is about. “Water pipes are part of the whole design of irrigation systems. The design of the system impact certain factors which determine the investment and operating costs,” she says.

Mathematical system to help farmers
Venter and Professor Bennie Grové, also from the Department of Agricultural Economics at the UFS, designed the Soil Water Irrigation Planning and Energy Management (SWIP-E) programming model as part of the WRC’s project, as well as for her master’s degree. “The model determines irrigation pump hours through a daily groundwater budget, while also taking into account the time-of-use electricity tariff structure and change in kilowatt requirements arising from the main-line design,” says Venter. The model is a non-linear programming model programmed in General Algebraic Modeling System (GAMS).

Design of irrigation system important for sustainability

The main outcome of the study is that the time-of-use electricity tariff structure (Ruraflex) is always more profitable than the flat-rate structure (Landrate). The interaction between the management and design of a system is crucial, as it determines the investment and operating costs. Irrigation designers should take the investment and operating cost of a system into account during the design process. The standards set by the South African Irrigation Institute (SAII) should also be controlled and revised.

Water-pipe thickness plays major role in cost cuts
There is interaction between water-pipe thickness, investment and operating costs. When thinner water pipes are installed, it increases the friction in the system as well as the kilowatt usage. A high kilowatt increases the operating cost, but the use of thinner water pipes lowers the investment cost. Thicker water pipes therefore lower the friction and the kilowatt requirements, which leads to lower operating costs, but thicker pipes have a higher investment cost. “It is thus crucial to look at the total cost (operating and investment cost) when investing in a new system. Farmers should invest in the system with the lowest total cost,” says Venter.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept