Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 May 2022 | Story Leonie Bolleurs | Photo Charl Devenish
Prof Tomas Vetrik
Prof Tomas Vetrik, Professor in the Department of Mathematics and Applied Mathematics, recently delivered his inaugural lecture on the UFS Bloemfontein Campus.

Prof Tomas Vetrik, Professor in the Department of Mathematics and Applied Mathematics at the University of the Free State (UFS), recently delivered his inaugural lecture on the Bloemfontein Campus.

His research area is graph theory, and he mainly focuses on the degree-diameter problem, graph indices, and metric dimension of graphs.

Research focus

According to Prof Vetrik, mathematics was always his favourite subject in school. He also excelled in maths at university and decided to enrol for a course on graph theory while working on his master’s degree. “I liked it, so I also chose topics from graph theory for my PhD thesis,” he says.

In 2014, at the age of 32, he was appointed Associate Professor at the UFS, after postdoctoral research at the University of KwaZulu-Natal and working at the University of Pretoria. An NRF-rated researcher, he has published close to 75 research papers, a third of that as a single author in some of the most well-known journals in his area. Moreover, he was also research supervisor of three PhD and three master’s students.

International collaborations

In the eight years since his appointment at the UFS, Prof Vetrik has made research visits to universities from 14 different countries that have invited him for research collaborations. 

“I am often overseas. I like working from different places. It is interesting to me, and it helps me to be productive,” says Prof Vetrik, explaining some of the inspiration behind his mathematical ideas.

In the next two years, he would like to study more general mathematical problems beyond his current research area.

He says he is addicted to his research. “It overshadows all my other interests.” 

On the rare occasion when he is not working on his research, Prof Vetrik states that he has to keep himself busy. Unable to relax and do nothing, he likes to do sports of some kind or to travel. 

“I am a simple person. I do not even have a TV at home. I use an old-fashioned mobile phone that cannot access the internet,” he says.


News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept