Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 May 2022 | Story Nonkululeko Nxumalo
Open Access 3


Should the UFS continue to subscribe to academic journals that are behind a paywall?

On 12 May 2022, the University of the Free State (UFS) held an online seminar on Open Science, posing this question.

The seminar was facilitated by Prof Corli Witthuhn, Vice-Rector: Research and Internationalisation, who was joined by the following experts: Colleen Campbell from the Max Planck Digital Library (MPDL) in Munich, Germany, where she coordinates the Open Access 2020 Initiative; Ellen Tise, Senior Director of Library and Information Services at Stellenbosch University (SU); Glen Truran, Director of the South African National Library and Information Consortium (SANLiC); and Charlie Molepo, Deputy Director at the UFS Library Service. The discussion centred around the issues of accessing and publishing academic content behind a paywall, and what open access initiatives are doing to transition scholarly work to an open access (OA) paradigm.

“Publishing academic content behind a paywall not only limits access to scholarly work, but also prevents research output from being visible and making maximum impact,” the university stated.

Paywalls vs Open Access

A paywall is a figurative wall used to limit access to certain prestigious academic content. Overcoming this wall usually means a one-time purchase option where the reader buys the content from the publisher, or it could be subscription-based where you pay a subscription fee for a fixed period. OA, on the other hand, seeks to make any scholarly work freely available to anyone interested in accessing it, including those who cannot afford the subscription fees.

"Currently, authors are required to give up copyright of their research articles to publishers. We want to move to a fully open paradigm where authors can redeem and openly license their articles so that they are free to share, use, and reuse their work so that science can move forward faster. By making it open, we gain a wider possible readership that will help improve the quality of science,” Campbell said.

Furthermore, not only are publishers making a profit from subscription fees, but they also benefit significantly from hefty publishing and author fees.

“Researchers are paying to publish their research output, and libraries are paying to access it in what is known as double-dipping by publishers, leading to what we term ‘serial crisis’. Research institutions pay twice and still do not see their research widely available to be read.”

Transformative Agreements 

The panel explained the use of transformative agreements as a strategy to achieve full OA publishing. This strategy includes OA initiatives that organise investments around open research communication, demanding price transparency from publishers, as well as reorganising workflow and building up the capacity to make OA a default.

With Truran presenting statistics on OA in South Africa, he highlighted that “only 46% of South African journals are available freely, the rest are still out of reach of those who cannot afford to pay the costs associated with paywalls”. Tise touched on some negotiation principles for a transformational transition to OA. “Inclusivity and social justice must be core. Publishers must have an equity, diversity, and inclusion plan that addresses the challenges of researchers in the Global South.”

Should the UFS continue to subscribe to academic journals that are behind a paywall? 
Truran answered this question by saying: “If we’re going to cancel subscriptions, then we should do it in unity and at the appropriate time. At the same time giving transformative agreements a go."

In his closing remarks, Molepo clarified the university’s stance on OA: “The UFS has taken a decision to publish all our journals in-house. We have flipped from subscription to full OA, and in the process, have seen a huge improvement in terms of citation. The impact of those journals has improved drastically from 2015 to 2021. We are content with that. The route to OA is the route this university should be taking,” he said.

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept