Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 May 2022 | Story Nonkululeko Nxumalo
Open Access 3


Should the UFS continue to subscribe to academic journals that are behind a paywall?

On 12 May 2022, the University of the Free State (UFS) held an online seminar on Open Science, posing this question.

The seminar was facilitated by Prof Corli Witthuhn, Vice-Rector: Research and Internationalisation, who was joined by the following experts: Colleen Campbell from the Max Planck Digital Library (MPDL) in Munich, Germany, where she coordinates the Open Access 2020 Initiative; Ellen Tise, Senior Director of Library and Information Services at Stellenbosch University (SU); Glen Truran, Director of the South African National Library and Information Consortium (SANLiC); and Charlie Molepo, Deputy Director at the UFS Library Service. The discussion centred around the issues of accessing and publishing academic content behind a paywall, and what open access initiatives are doing to transition scholarly work to an open access (OA) paradigm.

“Publishing academic content behind a paywall not only limits access to scholarly work, but also prevents research output from being visible and making maximum impact,” the university stated.

Paywalls vs Open Access

A paywall is a figurative wall used to limit access to certain prestigious academic content. Overcoming this wall usually means a one-time purchase option where the reader buys the content from the publisher, or it could be subscription-based where you pay a subscription fee for a fixed period. OA, on the other hand, seeks to make any scholarly work freely available to anyone interested in accessing it, including those who cannot afford the subscription fees.

"Currently, authors are required to give up copyright of their research articles to publishers. We want to move to a fully open paradigm where authors can redeem and openly license their articles so that they are free to share, use, and reuse their work so that science can move forward faster. By making it open, we gain a wider possible readership that will help improve the quality of science,” Campbell said.

Furthermore, not only are publishers making a profit from subscription fees, but they also benefit significantly from hefty publishing and author fees.

“Researchers are paying to publish their research output, and libraries are paying to access it in what is known as double-dipping by publishers, leading to what we term ‘serial crisis’. Research institutions pay twice and still do not see their research widely available to be read.”

Transformative Agreements 

The panel explained the use of transformative agreements as a strategy to achieve full OA publishing. This strategy includes OA initiatives that organise investments around open research communication, demanding price transparency from publishers, as well as reorganising workflow and building up the capacity to make OA a default.

With Truran presenting statistics on OA in South Africa, he highlighted that “only 46% of South African journals are available freely, the rest are still out of reach of those who cannot afford to pay the costs associated with paywalls”. Tise touched on some negotiation principles for a transformational transition to OA. “Inclusivity and social justice must be core. Publishers must have an equity, diversity, and inclusion plan that addresses the challenges of researchers in the Global South.”

Should the UFS continue to subscribe to academic journals that are behind a paywall? 
Truran answered this question by saying: “If we’re going to cancel subscriptions, then we should do it in unity and at the appropriate time. At the same time giving transformative agreements a go."

In his closing remarks, Molepo clarified the university’s stance on OA: “The UFS has taken a decision to publish all our journals in-house. We have flipped from subscription to full OA, and in the process, have seen a huge improvement in terms of citation. The impact of those journals has improved drastically from 2015 to 2021. We are content with that. The route to OA is the route this university should be taking,” he said.

News Archive

Using sugar to make the world a sweeter place
2017-10-13

Description: Deepback sugar Tags: Sugarcane, Dr Deepack Santchurn, Mauritius Sugar Industry Research Institute (MSIRI), Department of Plant Sciences 

Dr Deepack Santchurn, former PhD student in the
Department of Plant Sciences at the UFS,
and plant breeder in the  Mauritius Sugar Industry
Research Institute, with Prof Maryke Labuschagne, left,
Dr Santchurn’s study leader.
Photo: Charl Devenish



Besides it mainly being used for sugar production, sugarcane has emerged as an important alternative for providing clean renewable energy. Dr Deepack Santchurn, who works in the sugarcane breeding department of the Mauritius Sugar Industry Research Institute (MSIRI), believes if he could contribute towards a more environment-friendly and renewable energy through the use of sugarcane biomass, he would consider himself having made a great leap towards a better world. 

Sugarcane is mostly known and exploited for the sugar in its cane stem. According to Dr Santchurn it is not the only thing the crop does well. “Together with certain grasses, it is the finest living collector of sunlight energy and a producer of biomass in unit time. Sugarcane is now recognised worldwide as a potential renewable and environment-friendly bioenergy crop.” 

Significantly more bioenergy can be produced from sugarcane if the production system is not focused on the production and recovery of sucrose alone but on the maximum use to the total above-ground biomass. Diversification within the sugarcane industry is of paramount importance. 

He has been able to identify a few high biomass varieties that can be exploited industrially. One of the varieties is a commercial type with relatively high sugar and low fibre in the cane stem. Dr Santchurn explains: “Its sucrose content is about 0.5% less than the most cultivated commercial variety in Mauritius. Nevertheless, its sugar yield and above-ground biomass yield surpass those of the commercial varieties by more than 24%. The genetic gains compared to commercial varieties were around +50% for total biomass yield and +100% for fibre yield. Its cultivation is strictly related to bio-energy production and the extracted juice can be used as a feed-stock for ethanol and other high-value products.”

Dr Santchurn received his PhD at the UFS’s Department of Plant Sciences during the Winter Graduation Ceremonies in June this year. His study leader was Prof Maryke Labuschagne from the Department of Plant Sciences. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept