Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 May 2022 | Story Nonkululeko Nxumalo
Open Access 3


Should the UFS continue to subscribe to academic journals that are behind a paywall?

On 12 May 2022, the University of the Free State (UFS) held an online seminar on Open Science, posing this question.

The seminar was facilitated by Prof Corli Witthuhn, Vice-Rector: Research and Internationalisation, who was joined by the following experts: Colleen Campbell from the Max Planck Digital Library (MPDL) in Munich, Germany, where she coordinates the Open Access 2020 Initiative; Ellen Tise, Senior Director of Library and Information Services at Stellenbosch University (SU); Glen Truran, Director of the South African National Library and Information Consortium (SANLiC); and Charlie Molepo, Deputy Director at the UFS Library Service. The discussion centred around the issues of accessing and publishing academic content behind a paywall, and what open access initiatives are doing to transition scholarly work to an open access (OA) paradigm.

“Publishing academic content behind a paywall not only limits access to scholarly work, but also prevents research output from being visible and making maximum impact,” the university stated.

Paywalls vs Open Access

A paywall is a figurative wall used to limit access to certain prestigious academic content. Overcoming this wall usually means a one-time purchase option where the reader buys the content from the publisher, or it could be subscription-based where you pay a subscription fee for a fixed period. OA, on the other hand, seeks to make any scholarly work freely available to anyone interested in accessing it, including those who cannot afford the subscription fees.

"Currently, authors are required to give up copyright of their research articles to publishers. We want to move to a fully open paradigm where authors can redeem and openly license their articles so that they are free to share, use, and reuse their work so that science can move forward faster. By making it open, we gain a wider possible readership that will help improve the quality of science,” Campbell said.

Furthermore, not only are publishers making a profit from subscription fees, but they also benefit significantly from hefty publishing and author fees.

“Researchers are paying to publish their research output, and libraries are paying to access it in what is known as double-dipping by publishers, leading to what we term ‘serial crisis’. Research institutions pay twice and still do not see their research widely available to be read.”

Transformative Agreements 

The panel explained the use of transformative agreements as a strategy to achieve full OA publishing. This strategy includes OA initiatives that organise investments around open research communication, demanding price transparency from publishers, as well as reorganising workflow and building up the capacity to make OA a default.

With Truran presenting statistics on OA in South Africa, he highlighted that “only 46% of South African journals are available freely, the rest are still out of reach of those who cannot afford to pay the costs associated with paywalls”. Tise touched on some negotiation principles for a transformational transition to OA. “Inclusivity and social justice must be core. Publishers must have an equity, diversity, and inclusion plan that addresses the challenges of researchers in the Global South.”

Should the UFS continue to subscribe to academic journals that are behind a paywall? 
Truran answered this question by saying: “If we’re going to cancel subscriptions, then we should do it in unity and at the appropriate time. At the same time giving transformative agreements a go."

In his closing remarks, Molepo clarified the university’s stance on OA: “The UFS has taken a decision to publish all our journals in-house. We have flipped from subscription to full OA, and in the process, have seen a huge improvement in terms of citation. The impact of those journals has improved drastically from 2015 to 2021. We are content with that. The route to OA is the route this university should be taking,” he said.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept