Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 May 2022 | Story Nonkululeko Nxumalo
Open Access 3


Should the UFS continue to subscribe to academic journals that are behind a paywall?

On 12 May 2022, the University of the Free State (UFS) held an online seminar on Open Science, posing this question.

The seminar was facilitated by Prof Corli Witthuhn, Vice-Rector: Research and Internationalisation, who was joined by the following experts: Colleen Campbell from the Max Planck Digital Library (MPDL) in Munich, Germany, where she coordinates the Open Access 2020 Initiative; Ellen Tise, Senior Director of Library and Information Services at Stellenbosch University (SU); Glen Truran, Director of the South African National Library and Information Consortium (SANLiC); and Charlie Molepo, Deputy Director at the UFS Library Service. The discussion centred around the issues of accessing and publishing academic content behind a paywall, and what open access initiatives are doing to transition scholarly work to an open access (OA) paradigm.

“Publishing academic content behind a paywall not only limits access to scholarly work, but also prevents research output from being visible and making maximum impact,” the university stated.

Paywalls vs Open Access

A paywall is a figurative wall used to limit access to certain prestigious academic content. Overcoming this wall usually means a one-time purchase option where the reader buys the content from the publisher, or it could be subscription-based where you pay a subscription fee for a fixed period. OA, on the other hand, seeks to make any scholarly work freely available to anyone interested in accessing it, including those who cannot afford the subscription fees.

"Currently, authors are required to give up copyright of their research articles to publishers. We want to move to a fully open paradigm where authors can redeem and openly license their articles so that they are free to share, use, and reuse their work so that science can move forward faster. By making it open, we gain a wider possible readership that will help improve the quality of science,” Campbell said.

Furthermore, not only are publishers making a profit from subscription fees, but they also benefit significantly from hefty publishing and author fees.

“Researchers are paying to publish their research output, and libraries are paying to access it in what is known as double-dipping by publishers, leading to what we term ‘serial crisis’. Research institutions pay twice and still do not see their research widely available to be read.”

Transformative Agreements 

The panel explained the use of transformative agreements as a strategy to achieve full OA publishing. This strategy includes OA initiatives that organise investments around open research communication, demanding price transparency from publishers, as well as reorganising workflow and building up the capacity to make OA a default.

With Truran presenting statistics on OA in South Africa, he highlighted that “only 46% of South African journals are available freely, the rest are still out of reach of those who cannot afford to pay the costs associated with paywalls”. Tise touched on some negotiation principles for a transformational transition to OA. “Inclusivity and social justice must be core. Publishers must have an equity, diversity, and inclusion plan that addresses the challenges of researchers in the Global South.”

Should the UFS continue to subscribe to academic journals that are behind a paywall? 
Truran answered this question by saying: “If we’re going to cancel subscriptions, then we should do it in unity and at the appropriate time. At the same time giving transformative agreements a go."

In his closing remarks, Molepo clarified the university’s stance on OA: “The UFS has taken a decision to publish all our journals in-house. We have flipped from subscription to full OA, and in the process, have seen a huge improvement in terms of citation. The impact of those journals has improved drastically from 2015 to 2021. We are content with that. The route to OA is the route this university should be taking,” he said.

News Archive

UFS venture cleans up acid mine drainage
2015-07-06

The system that puts oxygen back into the water.

Photo: Supplied

South Africa is one of the most important mining countries in the world, beginning in the 1870s. Although the mining industry has been responsible for significant development and employment, it pollutes the environment and waters sources. Through the joint effort of a well-known mining company, the University of the Free State, and the Technology Innovation Agency (UFS/TIA) SAENSE Group, a new treatment for Acid Mine Drainage (AMD) has been developed.

The system treats the major contaminants found in acid mining wastewater effectively.  
 
The UFS remediation systems use a reservoir tank into which the AMD is pumped. The water then flows passively (without using energy) to the Barium Carbonate Dispersed Alkaline Substrate (BDAS) system. The metals and anions in the AMD react chemically with the barium carbonate and precipitate (form solids). The solids stay in the tank while the clean water is released.

The efficacy and applicability of the research was demonstrated on site in Belfast, Mpumalanga where the team constructed a pilot plant in July 2014. This patented technology has treated 1 814 400 litres of Acid Mine Drainage to date with an outflow water quality that satisfies the South African National Standards (SANS) 241:2006 & 2011 regulations for drinking water.   

Rohan Posthumus from the (UFS/TIA) SAENSE Group said: “At this stage, we do not recommend that the water should be used as drinking water, but certainly it can lower water usage in mines while finding application in dust suppression of washing processes. The team would like to complete a full characterisation of the final released water. There are currently no toxic by-products formed, and even very basic filtration can make the outflow drinking water.”

Prof Esta van Heerden’s research group from the Department of Microbial, Biochemical, and Food Biotechnology has been working on AMD research for some time, but the development of the BDAS system was started in 2013 by post-doctoral student, Dr Julio Castillo, and his junior researcher, Rohan Posthumus.

The data from the BDAS system have led to two publications in peer-reviewed journals as well as a registered patent.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept