Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 May 2022 | Story Lunga Luthuli
East College - Eco Vehicles Team
Overall winners of the 2022 Eco-vehicle race, East College, hard at work to get their car ready for the race held at the Odeion parking lot on the Bloemfontein Campus.

For the first time, the University of the Free State’s 2022 Eco-vehicle race – held on the Bloemfontein Campus on 14 May 2022 – had students from all three campuses participating in the programme and race; a cup was awarded to the college with the best support.

Although the annual event did take place in 2021, only team members were allowed access to campus due to the COVID-19 pandemic and lockdown regulations, and therefore the race was streamed live. 

Karen Scheepers, Assistant Director: Student Life, said: “To have the students back on campus supporting their teams was incredible; this event will become bigger and better every year.”

With the Eco-vehicle race project, the UFS aims to use an innovative skills development approach that will enable students to develop basic knowledge and skills on sustainable energy.

This year, 130 undergraduate students enrolled for this co-curricular skills programme that runs for nine months and culminates in the Eco-vehicle race. A total of eight teams competed in the energy efficiency race, speed race, obstacle course race, and the main event – the endurance race. For the first time in the main event, the teams raced against each other for 18 laps. 

The winners of this year’s event were Central College (Akasia, Karee, Kagiso, Soetdoring, and Wag-’n-Bietjie residences) for Spirit Cup, South Campus took home the Pit Stop, North College won the Smart Lap, and South College won the Endurance Race. The overall winners of the Eco-vehicle race were East College (Legatum residence). 

The driver for East College, Lebakeng Motlotlo, said: “Even though I have always been part of the KovsieACT Committee in my residence, seeing that the focus this year was more on energy saving and saving resources, it pushed me to participate.”

Motlotlo believes the practice he and his team went through worked for them, as they were able to practise “how to turn, slow down around corners, and save energy”. 

“Our team was very dedicated and knew how to improvise when faced with challenges. As a small residence and most of us living off campus, the race taught us the importance of teamwork.” 

Motlotlo believes “initiatives such as the Eco-vehicle race are important, as we learn other skills outside of lectures, which we sometimes think are not important”.

Scheepers said the plan is to “grow the programme, motivate other universities to also invest in their students through this programme, and race to become a national and maybe an international event”.

“The programme adds value to the student experience to ensure that they do not only obtain a degree during their study period, but also undergo practical application of acquired knowledge and skills through real-life situations and meaningful learning encounters,” said Scheepers. 

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept