Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 May 2022 | Story Lunga Luthuli
East College - Eco Vehicles Team
Overall winners of the 2022 Eco-vehicle race, East College, hard at work to get their car ready for the race held at the Odeion parking lot on the Bloemfontein Campus.

For the first time, the University of the Free State’s 2022 Eco-vehicle race – held on the Bloemfontein Campus on 14 May 2022 – had students from all three campuses participating in the programme and race; a cup was awarded to the college with the best support.

Although the annual event did take place in 2021, only team members were allowed access to campus due to the COVID-19 pandemic and lockdown regulations, and therefore the race was streamed live. 

Karen Scheepers, Assistant Director: Student Life, said: “To have the students back on campus supporting their teams was incredible; this event will become bigger and better every year.”

With the Eco-vehicle race project, the UFS aims to use an innovative skills development approach that will enable students to develop basic knowledge and skills on sustainable energy.

This year, 130 undergraduate students enrolled for this co-curricular skills programme that runs for nine months and culminates in the Eco-vehicle race. A total of eight teams competed in the energy efficiency race, speed race, obstacle course race, and the main event – the endurance race. For the first time in the main event, the teams raced against each other for 18 laps. 

The winners of this year’s event were Central College (Akasia, Karee, Kagiso, Soetdoring, and Wag-’n-Bietjie residences) for Spirit Cup, South Campus took home the Pit Stop, North College won the Smart Lap, and South College won the Endurance Race. The overall winners of the Eco-vehicle race were East College (Legatum residence). 

The driver for East College, Lebakeng Motlotlo, said: “Even though I have always been part of the KovsieACT Committee in my residence, seeing that the focus this year was more on energy saving and saving resources, it pushed me to participate.”

Motlotlo believes the practice he and his team went through worked for them, as they were able to practise “how to turn, slow down around corners, and save energy”. 

“Our team was very dedicated and knew how to improvise when faced with challenges. As a small residence and most of us living off campus, the race taught us the importance of teamwork.” 

Motlotlo believes “initiatives such as the Eco-vehicle race are important, as we learn other skills outside of lectures, which we sometimes think are not important”.

Scheepers said the plan is to “grow the programme, motivate other universities to also invest in their students through this programme, and race to become a national and maybe an international event”.

“The programme adds value to the student experience to ensure that they do not only obtain a degree during their study period, but also undergo practical application of acquired knowledge and skills through real-life situations and meaningful learning encounters,” said Scheepers. 

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept