Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 May 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS South Campus Creative clubs Initiative
UFS staff members from the Social Responsibilities Projects, Patience Aba, Judith Lefa, Noluthando Zwane, Dr Angela Stott, and Queen Selema, with a group of learners from the Ikaelelo Senior Secondary School looking at the effect of wind on the evaporation rate of water. This is one of the science experiments used as exemplars to stimulate the learners to plan their own science expo projects.

“This class teaches us how things work, and it gives us many ideas.” These are the words of Bokamoso Mahlasi, a Grade 9 learner at Ikaelelo Senior Secondary School, who says he dreams of becoming a radiologist one day. 

He is part of a group of 100 Grade 9 learners from schools around Bloemfontein, who – once a week for two hours – have the opportunity to learn more about mathematics, science, coding and to prepare science expo projects. This is made possible through the Creative Clubs programme, an initiative of the Social Responsibility Projects on the University of the Free State (UFS) South Campus. 

An opportunity to expand horizons

Dr Angela Stott, Researcher and Teacher Educator in the Social Responsibilities Projects, believes that they are providing township learners, who tend not to have much access to extracurricular opportunities, the chance to expand their horizons, obtain problem-solving and reasoning skills, and increase their interest in mathematics, science, and coding through a range of extracurricular extension activities.

Dr Joleen Hamilton, initiator and coordinator of this programme, says, “The learners attending these sessions are achievers in the current school system. Teachers often don’t have time to give extra stimulation to higher-achieving learners. With Creative Clubs, we want to address that gap.”

She continues: “Besides creating an interest in mathematics, science, and coding, we also focus on building self-esteem and confidence. Our thinking is that if learners believe in themselves, they are more willing to take on challenges. Developing skills such as perseverance and reflection form part of our focus as well. With some of the activities we also give learners the opportunity to work as a team, preparing them for real-life situations where one often needs to work in a group setting. By developing the mentioned skills, we aim to empower learners to excel in different areas.”

The importance of mathematics in real life

During the Creative Clubs sessions, a series on the basics of doing a science expo project is presented to stimulate interest in this competition and to guide the learners in planning their own science expo projects. Dr Stott adds that they are also presenting a session on extracurricular mathematics activities. “This includes problem-solving tasks, brain teasers, and games. We emphasise the importance and use of mathematics in real life,” explains Dr Hamilton.

We also focus on building self-esteem and confidence. Our thinking is that if learners believe in themselves, they are more willing to take on challenges. – Dr Joleen Hamilton

Also in the pipeline is a planned outing to the Naval Hill Planetarium, as well as a session introducing coding, where learners will be playing the Boats and Tanks coding game, teaching them the basic coding commands. 


News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept