Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 May 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS South Campus Creative clubs Initiative
UFS staff members from the Social Responsibilities Projects, Patience Aba, Judith Lefa, Noluthando Zwane, Dr Angela Stott, and Queen Selema, with a group of learners from the Ikaelelo Senior Secondary School looking at the effect of wind on the evaporation rate of water. This is one of the science experiments used as exemplars to stimulate the learners to plan their own science expo projects.

“This class teaches us how things work, and it gives us many ideas.” These are the words of Bokamoso Mahlasi, a Grade 9 learner at Ikaelelo Senior Secondary School, who says he dreams of becoming a radiologist one day. 

He is part of a group of 100 Grade 9 learners from schools around Bloemfontein, who – once a week for two hours – have the opportunity to learn more about mathematics, science, coding and to prepare science expo projects. This is made possible through the Creative Clubs programme, an initiative of the Social Responsibility Projects on the University of the Free State (UFS) South Campus. 

An opportunity to expand horizons

Dr Angela Stott, Researcher and Teacher Educator in the Social Responsibilities Projects, believes that they are providing township learners, who tend not to have much access to extracurricular opportunities, the chance to expand their horizons, obtain problem-solving and reasoning skills, and increase their interest in mathematics, science, and coding through a range of extracurricular extension activities.

Dr Joleen Hamilton, initiator and coordinator of this programme, says, “The learners attending these sessions are achievers in the current school system. Teachers often don’t have time to give extra stimulation to higher-achieving learners. With Creative Clubs, we want to address that gap.”

She continues: “Besides creating an interest in mathematics, science, and coding, we also focus on building self-esteem and confidence. Our thinking is that if learners believe in themselves, they are more willing to take on challenges. Developing skills such as perseverance and reflection form part of our focus as well. With some of the activities we also give learners the opportunity to work as a team, preparing them for real-life situations where one often needs to work in a group setting. By developing the mentioned skills, we aim to empower learners to excel in different areas.”

The importance of mathematics in real life

During the Creative Clubs sessions, a series on the basics of doing a science expo project is presented to stimulate interest in this competition and to guide the learners in planning their own science expo projects. Dr Stott adds that they are also presenting a session on extracurricular mathematics activities. “This includes problem-solving tasks, brain teasers, and games. We emphasise the importance and use of mathematics in real life,” explains Dr Hamilton.

We also focus on building self-esteem and confidence. Our thinking is that if learners believe in themselves, they are more willing to take on challenges. – Dr Joleen Hamilton

Also in the pipeline is a planned outing to the Naval Hill Planetarium, as well as a session introducing coding, where learners will be playing the Boats and Tanks coding game, teaching them the basic coding commands. 


News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept