Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 May 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS South Campus Creative clubs Initiative
UFS staff members from the Social Responsibilities Projects, Patience Aba, Judith Lefa, Noluthando Zwane, Dr Angela Stott, and Queen Selema, with a group of learners from the Ikaelelo Senior Secondary School looking at the effect of wind on the evaporation rate of water. This is one of the science experiments used as exemplars to stimulate the learners to plan their own science expo projects.

“This class teaches us how things work, and it gives us many ideas.” These are the words of Bokamoso Mahlasi, a Grade 9 learner at Ikaelelo Senior Secondary School, who says he dreams of becoming a radiologist one day. 

He is part of a group of 100 Grade 9 learners from schools around Bloemfontein, who – once a week for two hours – have the opportunity to learn more about mathematics, science, coding and to prepare science expo projects. This is made possible through the Creative Clubs programme, an initiative of the Social Responsibility Projects on the University of the Free State (UFS) South Campus. 

An opportunity to expand horizons

Dr Angela Stott, Researcher and Teacher Educator in the Social Responsibilities Projects, believes that they are providing township learners, who tend not to have much access to extracurricular opportunities, the chance to expand their horizons, obtain problem-solving and reasoning skills, and increase their interest in mathematics, science, and coding through a range of extracurricular extension activities.

Dr Joleen Hamilton, initiator and coordinator of this programme, says, “The learners attending these sessions are achievers in the current school system. Teachers often don’t have time to give extra stimulation to higher-achieving learners. With Creative Clubs, we want to address that gap.”

She continues: “Besides creating an interest in mathematics, science, and coding, we also focus on building self-esteem and confidence. Our thinking is that if learners believe in themselves, they are more willing to take on challenges. Developing skills such as perseverance and reflection form part of our focus as well. With some of the activities we also give learners the opportunity to work as a team, preparing them for real-life situations where one often needs to work in a group setting. By developing the mentioned skills, we aim to empower learners to excel in different areas.”

The importance of mathematics in real life

During the Creative Clubs sessions, a series on the basics of doing a science expo project is presented to stimulate interest in this competition and to guide the learners in planning their own science expo projects. Dr Stott adds that they are also presenting a session on extracurricular mathematics activities. “This includes problem-solving tasks, brain teasers, and games. We emphasise the importance and use of mathematics in real life,” explains Dr Hamilton.

We also focus on building self-esteem and confidence. Our thinking is that if learners believe in themselves, they are more willing to take on challenges. – Dr Joleen Hamilton

Also in the pipeline is a planned outing to the Naval Hill Planetarium, as well as a session introducing coding, where learners will be playing the Boats and Tanks coding game, teaching them the basic coding commands. 


News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept