Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 May 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Taking the lead to positively impact
Attending the graduation ceremony in the short learning programme: Teacher Professional Development for Digital Mobile Learning, and Entrepreneurship for SMMEs, were, from the left: Lintle Nthati Radikgomo, Thabile Sylvia Masangane, and André Uys from the Flavius Mareka College in Sasolburg, and Thandeka Mosholi from the UFS.

Gym instructor, homework centre owner, fashion designer, photographer. These are but some of the students who walked across the stage to receive their qualifications after completing an entrepreneurship programme on the South Campus of the University of the Free State (UFS).

The Department of Social Responsibility, Enterprise and Community Engagement on the South Campus recently hosted a ceremony for students in the short learning programme: Teacher Professional Development for Digital Mobile Learning, and Entrepreneurship for SMMEs.

According to Thakane Nteko from the Social Responsibility Projects (SRP), 40 of the 66 students enrolled for the qualification in lecture development completed it, together with the 10 students who registered for the entrepreneurship programme. The students are mainly university and TVET (Technical and Vocational Education and Training) lecturers and self-employed youth.

She says the department aims to enhance teaching and learning in the Free State, be it for school learners, schoolteachers, TVET college lecturers, or the youth. Key in this initiative is the UFS, in partnership with Sector Education and Training Authorities (SETAs) and other organisations involved in community development, to make a positive difference in communities where there is a need.

Addressing social injustices
Positively impacting the youth of South Africa is of critical importance to the UFS. “Creating opportunities and growth through leading, learning, and teaching, is not only valid for the young intellectuals who have the chance to qualify themselves through tertiary studies. It is also applicable to the disadvantaged communities exposed to poor education. The UFS SRP serve as the vehicle to address this social injustice,” states Thandeka Mosholi, Head of the Department of Social Responsibility, Enterprise and Community Engagement.

She trusts that Social Responsibility Projects has established itself as a supporter of disadvantaged communities by responding to the call to positively impact the future of South African youth. “Our passion resonates with those who desire to open opportunities and bring purpose to gifted learners born in circumstances they did not choose, by being leaders in school change,” she says.

Destined for greatness
Delivering messages of encouragement at the event was KB Lebusho, CEO of the Free State Chamber of Commerce and Industry. Addressing the group of entrepreneurs, lecturers, and teachers, he told them that they are destined for greatness. “But until you believe in yourself, things will not change for you. It is important that you have clarity about your dreams and goals.”

Advocate Shirly Hyland, Director: Kovsie Phahamisa Academy, also left the students with a message of support. “By paying education forward, we can change the world. The power to touch the lives around you, lies in your hands. Enjoy taking the knowledge you have learned into your communities,” she said.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept