Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 May 2022 | Story Leonie Bolleurs | Photo Supplied
Prof Hennie van Coller and Prof Hendrik Swart
Prof Hennie van Coller, left, received the the NP van Wyk Louw medal, and Prof Hendrik Swart, right, received the Havenga Prize for Physical Sciences.

The board of the Suid-Afrikaanse Akademie vir Wetenskap en Kuns (SAAWK) recently (22 April) announced the winners of the 2022 prizes. The academy, which was established in 1901, aims to promote the use of Afrikaans in science and the arts.

Havenga Prize for Physical Sciences

Prof Hendrik Swart, NRF B1-rated researcher, SARChI Research Chair in Solid-state Luminescent and Advanced Materials, and Senior Professor in the Department of Physics at the University of the Free State (UFS), received the prestigious Havenga Prize for Physical Sciences.

He says it is an honour to receive this award. “When I look at the list of names that have received the award in the past, I am very humbled and surprised to receive such an award.”

The Havenga Prize, for which candidates are specifically judged on research publications and evidence of their promotion of Afrikaans, has been awarded annually for the past 77 years for original research in the natural sciences or a technical field. 

A collaboration with researchers from the Nelson Mandela University (NMU) on semiconductor materials that improve the efficiency of solar cells, resulted in Prof Japie Engelbrecht (Emeritus Professor, NMU) nominating Prof Swart for this award. He is involved in an NRF collaborative research project with NMU and Linköping University in Sweden.

Prof Swart has played an important role in the acquisition of numerous research devices for analysing the thin layer of phosphor, and the semiconductor devices that can be made from such materials. His research and zeal for his work led to the establishment of the national nano-surface characterisation facility (NNSCF) containing state-of-the-art surface characterisation equipment. 

The PHI Quantes XPS system, for instance, is the first in Africa and one of only 20 in the world. The Quantes XPS system uses X-rays to determine the chemical composition of molecules on the surface of a sample. The system is unique in the sense that it also has an extra X-ray source that can determine the chemical state below the surface, which was not possible in the past. This will help to dictate the position of defects in phosphor materials, which will consequently enable the department to create better phosphor for solid-state lighting as well as solar cell applications.

The most meaningful for him, however, was the production of several well-trained postgraduate students and the generation of high-impact, well-cited scientific publications.

This award, one of several awards he has received during his career, does not signify the end of the road. On the contrary, he is looking forward to improving solar cells by using the phosphor materials they have manufactured, applying it on glass windows doped with phosphors to generate electricity.

NP van Wyk Louw Medal and Alba Bouwer Prize for children's literature

The NP van Wyk Louw Medal was awarded to Prof Hennie van Coller, a researcher who is also affiliated to the UFS. Prof Van Coller, currently an emeritus outstanding professor and research fellow at the university, was a former Head of the UFS Department of Afrikaans and Dutch, German and French, as well as Chairperson of SAAWK. He is known for his impact on the literary world, both locally and internationally, through the quality of his scientific articles and books. 

According to SAAWK, the body awards the NP van Wyk Louw Medal for a person’s creative contributions to the exploitation, organisation, and continuous development of a section of the humanities, significantly contributing to the advancement of the humanities.

Jaco Jacobs, the children’s author of more than 170 books who recently presented the 35th DF Malherbe Memorial Lecture at the UFS, was also awarded for his work. Jacobs, also a UFS alumnus, received the Alba Bouwer Prize for children's literature. The prize, which is awarded every three years, was presented to Jacobs for the book Die boekwinkel tussen die wolke, written during the COVID-19 lockdown period. 

SAAWK will present the awards later this year during two virtual award ceremonies in July. 

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept