Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 May 2022 | Story Leonie Bolleurs
Prof Prinsloo and Minee van den Berg
Prof Frans Prinsloo and Mineé van den Berg. Prof Prinsloo believes the performance of the UFS graduates in the ITC examination confirms the quality of the Chartered Accountancy academic programme offered by the university.

The BAcc Honours and PGDip (Chartered Accountancy) graduates (2021) from the School of Accountancy at the University of the Free State (UFS) excelled in the latest Initial Test of Competence (ITC) examination of the South African Institute of Chartered Accountants (SAICA).

It was with great excitement that the school received the results that were released by SAICA. UFS graduates had an overall pass rate of 76% in this examination, comparing favourably to the national overall pass rate of 59%. 

Resilience and perseverance

“We are very proud of what our 2021 graduates have achieved. They excelled despite the very challenging circumstances of the emergency remote teaching environment in 2020 and 2021, and this outcome is proof of their hard work,” says Prof Frans Prinsloo, Director of the School of Accountancy.

He adds: “The performance of the UFS graduates in the ITC examination confirms the quality of the Chartered Accountancy academic programme offered by the UFS, as well as the strength of the learning and teaching model that is adopted by the school – which aims to add significant value in the development of Accountancy students’ knowledge and skills towards their qualifying as accountancy professionals. Moreover, these results are testament to the resilience and perseverance of our Accountancy students and the dedication of the staff of the School of Accountancy.”

What made the results announcement extra special is that two UFS graduates from the class of 2021, Lindi van Eyk and Mineé van den Berg, passed this challenging examination with distinction, ruling them as part of the elite group of 29 candidates nationally who passed with distinction – from 2 946 candidates who wrote this examination in January 2022.

Making a difference

Van den Berg, who was named the best honours student in the Faculty of Economic and Management Sciences, also obtained her honours degree with distinction. She received the degree during the recent April graduation ceremonies.

“It is an honour to be able to use and invest in God-given abilities and opportunities. I believe that consistency, a set routine, and faith made it possible to be successful in the exam.”

“My results in the ITC exam assured me that I have the ability to successfully become a chartered accountant,” says Van den Berg, who is currently doing her internship with PricewaterhouseCoopers (PwC) in Stellenbosch. She is hoping to complete her articles and pass the second qualifying exam to become a chartered accountant (SA), working both locally and internationally. From a young age, she enjoyed numbers and later found accounting to be the most suitable career field to live out her passion. “I believe that I can make a difference by working in an environment I enjoy,” she says. 

Hard work and consistency

‘Consistency’. This is the one word that Van Eyk uses to describe the reason for her success in the ITC exams. “From my first year studying BAcc, I was upskilling myself with the necessary business and global acumen. Following the advice of the lecturers, who do their best to prepare us to become professionals, consistent hard work is what made it possible for me to pass the exam with distinction.”

Van Eyk, who also passed her honours degree at the UFS with distinction, is currently employed by PwC in Midrand. She is still considering her options after qualification as a chartered accountant (SA), but she believes that her career opportunities will be endless.

Goal-driven and excited by the prospects of learning new things, Van Eyk also strives to be an inspiration to those who want to pursue studies in the field of CA(SA). She believes by persevering and not giving up on this long and hard journey, she will become the person that the world needs.

Prof Prinsloo also congratulated the other 53 UFS graduates who passed the January 2022 ITC examination, including a group of seven SAICA academic trainees who are currently completing the first year of their three-year training contract in the School of Accountancy.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept