Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 May 2022 | Story Lunga Luthuli | Photo Supplied
University of Limpopo visits UFS Protection Services
Staff from the University of the Free State Department of Protection Services pictured with the delegation from the University of Limpopo during their benchmarking visit.

The University of the Free State Department of Protection Services hosted a delegation from the University of Limpopo on Friday, 13 May 2022 as part of benchmarking best protection service practices. 

During the visit, discussions included the management of student protests, gender-based violence, fire emergency responses, and challenges experienced with the Campus Protection Society of Southern Africa.

The visit by the University of Limpopo follows similar benchmark visits by the Central University of Technology, Sol Plaatje University, and the University of Johannesburg.

Noko Masalesa, Senior Director: Protection Services, said: “The visit by the University of Limpopo was used to take them through our vision 2024, to show them some of the advanced CCTV cameras that the UFS has installed, the policies, and organisational structure. Part of that strategy is to enhance the university’s security technology in line with the best practices.”

Masalesa said: “The UFS has a good model to manage all the different functional areas of the Department of Protection Services, and most universities are impressed with the new CCTV cameras that we rolled out and the other advances made in the development of protection services over the past five years.”

To remain among the leaders in protection services within the higher education, the department also visited Stellenbosch University, the University of Cape Town, Cape Peninsula University of Technology, and the University of Nairobi and Kenyatta University – both in Kenya.

Mampuru Mampa, Director: Safety and Security at the University of Limpopo, said: “Like other institutions, the University of Limpopo is dealing with crimes affecting students on and off campus, as well as student protests. Fostering collaboration and benchmarking will assist our protection service departments to develop and implement a standardised approach to improve safety on our campuses.”

On lessons learnt during the benchmarking tour, Mampa said: “We have learnt about security system integration, investigation systems approach, off-campus security, and student protest management.”

Mampa believes “it is important for protection service departments across the higher education sector to develop standardised security measures to improve safety, and benchmarking assists in closing gaps in protection services”.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept