Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 November 2022 | Story Jóhann Thormählen | Photo Jóhann Thormählen
Mating Monokoane Louzanne Coetzee Claus Kempen
Louzanne Coetzee, Claus Kempen – who both run for the Kovsie Athletics club – and Mating Monokoane, the University of the Free State (UFS) women’s soccer captain, are joining hands by starting the Louzanne Coetzee Foundation. Here, from the left, are Monokoane, Coetzee, and Kempen at Pellies Park on the UFS Bloemfontein Campus.

Leaving a legacy. Although she is still in the prime of her career, this has motivated Louzanne Coetzee to start a foundation to benefit others.

The sports star, who won silver (1 500 m; T11) and bronze (marathon; T12) medals at the Paralympics in Tokyo in 2021, wants to empower and support para-athletes. And she is joining hands with two fellow Kovsies to do it.

They will invest their time and talents towards the Louzanne Coetzee Foundation, a result of an idea that started while the 29-year-old Coetzee was competing at the Paralympic Games.

The University of the Free State (UFS) Residence Head of Akasia started the foundation in partnership with Claus Kempen, her guide, and Mating Monokoane, the UFS women’s soccer captain.

“I realised there was a gap in development, especially for para-athletes,” she says.

“You get to a certain level, and in South Africa there is uncertainty with regard to funding and educating athletes.”

 

Identifying needs

According to Kempen, the foundation will start by generating funds to assist others. Help can be provided by educating, informing or “physically giving financial aid to someone in need, whether it is a wheelchair, entering for a competition, or a bursary”.

Coetzee serves in many leadership roles, such as the South African Sports Confederation and Olympic Committee (SASCOC) Athletes Commission and says she will make use of these.

“I am involved in the South African Sports Association for the Physically Disabled, and that gives me a good platform to see where help is needed.

“And with Mating involved in the UFS, it gives us good insights into where the needs are.”

Coetzee will also work with organisations such as the Free State Sport Association for the Physically Disabled and Visually Impaired. “I am also going to start getting more involved with KovsieSport. It is very exciting.”

 

Guiding and following

Coetzee and Kempen have been talking about a foundation for some time and she wanted to include Monokoane, the 2022 Prime of Akasia.

They have been working together for the past three years. Coetzee admires her passion, ethics, and “knows she also has a heart for leaving a legacy”.

And it is fitting that their residence motto is: ‘Live, love, learn and leave a legacy’.

Kempen says it is a privilege to be involved.

“Normally my role is to guide Louzanne, but in this instance I am following, and she is taking me on a journey to explore what we can do to empower other individuals and groups.”

He congratulated the UFS on a successful leadership pathway.

“It is something we like to talk about, namely developing students into leaders.”

“Louzanne took the opportunity with Mating, and they went from a student and employee relationship to partners.”

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept