Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 November 2022 | Story Jóhann Thormählen | Photo Jóhann Thormählen
Mating Monokoane Louzanne Coetzee Claus Kempen
Louzanne Coetzee, Claus Kempen – who both run for the Kovsie Athletics club – and Mating Monokoane, the University of the Free State (UFS) women’s soccer captain, are joining hands by starting the Louzanne Coetzee Foundation. Here, from the left, are Monokoane, Coetzee, and Kempen at Pellies Park on the UFS Bloemfontein Campus.

Leaving a legacy. Although she is still in the prime of her career, this has motivated Louzanne Coetzee to start a foundation to benefit others.

The sports star, who won silver (1 500 m; T11) and bronze (marathon; T12) medals at the Paralympics in Tokyo in 2021, wants to empower and support para-athletes. And she is joining hands with two fellow Kovsies to do it.

They will invest their time and talents towards the Louzanne Coetzee Foundation, a result of an idea that started while the 29-year-old Coetzee was competing at the Paralympic Games.

The University of the Free State (UFS) Residence Head of Akasia started the foundation in partnership with Claus Kempen, her guide, and Mating Monokoane, the UFS women’s soccer captain.

“I realised there was a gap in development, especially for para-athletes,” she says.

“You get to a certain level, and in South Africa there is uncertainty with regard to funding and educating athletes.”

 

Identifying needs

According to Kempen, the foundation will start by generating funds to assist others. Help can be provided by educating, informing or “physically giving financial aid to someone in need, whether it is a wheelchair, entering for a competition, or a bursary”.

Coetzee serves in many leadership roles, such as the South African Sports Confederation and Olympic Committee (SASCOC) Athletes Commission and says she will make use of these.

“I am involved in the South African Sports Association for the Physically Disabled, and that gives me a good platform to see where help is needed.

“And with Mating involved in the UFS, it gives us good insights into where the needs are.”

Coetzee will also work with organisations such as the Free State Sport Association for the Physically Disabled and Visually Impaired. “I am also going to start getting more involved with KovsieSport. It is very exciting.”

 

Guiding and following

Coetzee and Kempen have been talking about a foundation for some time and she wanted to include Monokoane, the 2022 Prime of Akasia.

They have been working together for the past three years. Coetzee admires her passion, ethics, and “knows she also has a heart for leaving a legacy”.

And it is fitting that their residence motto is: ‘Live, love, learn and leave a legacy’.

Kempen says it is a privilege to be involved.

“Normally my role is to guide Louzanne, but in this instance I am following, and she is taking me on a journey to explore what we can do to empower other individuals and groups.”

He congratulated the UFS on a successful leadership pathway.

“It is something we like to talk about, namely developing students into leaders.”

“Louzanne took the opportunity with Mating, and they went from a student and employee relationship to partners.”

News Archive

Studies to reveal correlation between terrain, energy use, and giraffe locomotion
2016-11-18



More than half of giraffes in captivity in Europe are afflicted by lameness. This high prevalence represents an important welfare issue, similar to other large zoo animals.

According to Dr Chris Basu, a veterinarian at the Royal Veterinary College in the UK, giraffes in captivity are often afflicted by overgrown hooves, laminitis and joint problems. Diagnosis and treatment is limited by our understanding of anatomy and function, more specifically the locomotion of these animals. Although the giraffe is such a well-known and iconic animal, relatively little has been studied about their locomotor behaviour.

Dr Basu recently visited South Africa to do fieldwork on the locomotion of giraffes as part of his PhD studies under the mentorship of world-renowned Professor of Evolutionary Biomechanics, Prof John Hutchinson. This project is a joint venture between Dr Basu and Dr Francois Deacon, researcher in the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research. 

Together Prof Hutchinson and Drs Deacon and Basu form a research group, working on studies about giraffe locomotion.

Wild giraffe population decrease by 40% in past decade

“Locomotion is one of the most common animal behaviours and comes with a significant daily energetic cost. Studying locomotion of wild animals aids us in making estimates of this energetic cost. Such estimates are useful in understanding how giraffes fit into ecosystems. Future conservation efforts will be influenced by knowledge of the energy demands in giraffes.

“Understanding aspects of giraffe locomotion also helps us to understand the relationships between anatomy, function and evolution. This is relevant to our basic understanding of the natural world, as well as to conservation and veterinary issues,” said Dr Deacon.

Locomotion study brings strategy for specialist foot care

On face value it seems as if foot disease pathologies are more common in zoo giraffes than in wild giraffes. “However, we need a good sample of data from both populations to prove this assumption,” said Dr Basu. 

This phenomenon is not well understood at the moment, but it’s thought that diet, substrate (e.g. concrete, straw, sand and grass) and genetics play a part in foot disease in giraffes. “Understanding how the feet are mechanically loaded during common activities (standing, walking, running) gives our research group ideas of where the highest strains occur, and later how these can be reduced through corrective foot trimming,” said Dr Basu.

Through the studies on giraffe locomotion, the research group plans to devise strategies for corrective foot trimming. At the moment, foot trimming is done with the best evidence available, which is extrapolation from closely related animals such as cattle. “But we know that giraffes’ specialist anatomy will likely demand specialist foot care,” Dr Basu said.

Studying giraffes in smaller versus larger spaces

The research group has begun to study the biomechanics of giraffe walking by looking at the kinematics (the movement) and the kinetics (the forces involved in movement) during walking strides. For this he studied adult giraffes at three zoological parks in the UK. 

However, due to the close proximity of fencing and buildings, it is not practical to study fast speeds in a zoo setting. 

A setting such as the Willem Pretorius Nature Reserve, near Ventersburg in the Free State, Kwaggafontein Nature Reserve, near Colesberg in the Karoo, and the Woodland Hills Wildlife Estate in Bloemfontein are all ideal for studying crucial aspects such as “faster than walking” speeds and gaits to measure key parameters (such as stride length, step frequency and stride duration). These studies are important to understand how giraffe form and function are adapted to their full range of locomotor behaviours. It also helps to comprehend the limits on athletic capacity in giraffes and how these compare to other animals. 

Drones open up unique opportunities for studying giraffes

The increasing availability of unmanned aerial vehicles (UAVs)/drones opens up unique opportunities for studying locomotion in animals like giraffes. Cameras mounted onto remotely controlled UAVs are a straightforward way to obtain high-quality video footage of giraffes while they run at different speeds.

“Using two UAVs, we have collected high definition slow motion video footage of galloping giraffes from three locations in the Free State. We have also collected detailed information about the terrain that the giraffes walked and ran across. From this we have created 3D maps of the ground. These maps will be used to examine the preferred terrain types for giraffes, and to see how different terrains affect their locomotion and energy use,” said Dr Deacon.

“The raw data (videos) will be digitised to obtain the stride parameters and limb angles of the animals. Later this will be combined with anatomical data and an estimation of limb forces to estimate the power output of the limbs and how that changes between different terrains,” said Dr Basu.


Related articles:

23 August 2016: Research on locomotion of giraffes valuable for conservation of this species
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept