Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 November 2022 | Story Edzani Nephalela | Photo Edzani Nephalela
UFS Creative Clubs
Joleen Hamilton assists learners with their activities.

In an ever-changing, increasingly complicated world, the youth must be prepared to bring knowledge and skills to solve issues, make sense of information, and know how to acquire and analyse evidence to make judgements. Science, Technology, Engineering, and Mathematics (STEM) education encourages discussions and problem-solving among students, developing practical skills and an appreciation for collaborations. 

The Social Responsibility Projects department on the UFS South Campus is running a Creative Clubs programme that speaks to STEM education and collaboration.

Opening opportunities 

The primary goal of Creatives Clubs, a MerSETA-funded programme, is to open opportunities to develop problem-solving, critical thinking, and reasoning skills. One aspect Creative Clubs focuses on is identifying potential in the pupil and supporting them in participating in the Eskom Expo for Young Scientists. Learners participate in mathematics, science, and coding activities at the club.

According to Joleen Hamilton, the coordinator and founder of Creatives Clubs, they currently host top-achieving learners in maths from eight schools from Grades 8–12 in Bloemfontein. These schools are split into two groups, which meet at the South Campus on Tuesdays and Thursdays. “We need maths daily, since it stimulates the intellect and aids problem-solving. That’s why, no matter how complicated the sum looks, keep trying and do not give up,” Hamilton said at one of the maths sessions.

Enhancing critical thinking

Matheko Thamae, also a coordinator, mentioned that this programme significantly improves maths and science outcomes for high school learners. “With a dynamic world of innovation and the 4th Industrial Revolution (4IR), the club also assists learners with critical thinking and in solving their communities’ socio-economic issues,” Thamae said. 

“Attending these sessions assists me in thinking out of the box and realising that every problem has a solution. I will continue to attend the programme so that I can find solutions to unresolved problems,” Sechaba Ramakatsa, a Grade 9 learner from Lekhulong Secondary School, said. Ramakatsa, who enjoys assisting others, aspires to be a medical doctor so that people might have better healthcare experiences.

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept