Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 November 2022 | Story Edzani Nephalela and Dr Nomalungelo Ngubane | Photo iStock
Language
The UFS and UKZN have formalised an agreement on a Language Collaboration Memorandum of Understanding (MOU) to advance the development of the Sesotho and IsiZulu as academic languages.

The University of the Free State (UFS) has forged an exciting new partnership with the University of KwaZulu-Natal (UKZN) to promote the two provinces’ most widely spoken languages, Sesotho and IsiZulu.  

This historic collaboration will see these institutions employing their skills, expertise, and resources to advance the development of the Sesotho and IsiZulu as academic languages through the development of terminology for various disciplines and research collaborations among other activities. 

The UFS formalised the agreement by signing a Language Collaboration Memorandum of Understanding (MOU) with UKZN. The MOU process, facilitated by Dr Nomalungelo Ngubane, Director of the UFS Academy for Multilingualism, and Nikile Ntsababa, UFS Registrar, was sealed by Dr Engela Van Staden, UFS Vice-Rector: Academic. 

The objectives of the collaboration are to: 

• allow the UFS open access to all the UKZN isiZulu materials and UKZN open access to all UFS Sesotho language terminology, corpus materials, terminology banks, and applications for various disciplines; 
• develop the Sesotho terminology for various disciplines;
• assist in identifying and closing any gaps in the UFS’s development of isiZulu terminology and in the UKZN’s development of isiZulu, and further develop the relevant language terminology of various disciplines in order to fill any existing gaps;
• share expertise through hosting webinars, seminars, colloquia, and workshops on Sesotho and isiZulu terminology development;
• explore research opportunities regarding the development of Sesotho and isiZulu terminology for various disciplines; and 
• share expertise and resources in all human language technology development initiatives.

“The UKZN has championed the intellectualisation of IsiZulu over the years. We do not want to reinvent the wheel,” Dr Ngubane said. “Our focus now is on the acceleration of the development of Sesotho. Our vision and mission is to be the hub for the advancement of Sesotho at regional, national, and international levels. Collaboration with UKZN is instrumental in achieving this mandate.”

The Academy for Multilingualism said it considers this collaboration historic and groundbreaking because resources will now be invested in the development of Sesotho.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept