Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 November 2022 | Story Edzani Nephalela and Dr Nomalungelo Ngubane | Photo iStock
Language
The UFS and UKZN have formalised an agreement on a Language Collaboration Memorandum of Understanding (MOU) to advance the development of the Sesotho and IsiZulu as academic languages.

The University of the Free State (UFS) has forged an exciting new partnership with the University of KwaZulu-Natal (UKZN) to promote the two provinces’ most widely spoken languages, Sesotho and IsiZulu.  

This historic collaboration will see these institutions employing their skills, expertise, and resources to advance the development of the Sesotho and IsiZulu as academic languages through the development of terminology for various disciplines and research collaborations among other activities. 

The UFS formalised the agreement by signing a Language Collaboration Memorandum of Understanding (MOU) with UKZN. The MOU process, facilitated by Dr Nomalungelo Ngubane, Director of the UFS Academy for Multilingualism, and Nikile Ntsababa, UFS Registrar, was sealed by Dr Engela Van Staden, UFS Vice-Rector: Academic. 

The objectives of the collaboration are to: 

• allow the UFS open access to all the UKZN isiZulu materials and UKZN open access to all UFS Sesotho language terminology, corpus materials, terminology banks, and applications for various disciplines; 
• develop the Sesotho terminology for various disciplines;
• assist in identifying and closing any gaps in the UFS’s development of isiZulu terminology and in the UKZN’s development of isiZulu, and further develop the relevant language terminology of various disciplines in order to fill any existing gaps;
• share expertise through hosting webinars, seminars, colloquia, and workshops on Sesotho and isiZulu terminology development;
• explore research opportunities regarding the development of Sesotho and isiZulu terminology for various disciplines; and 
• share expertise and resources in all human language technology development initiatives.

“The UKZN has championed the intellectualisation of IsiZulu over the years. We do not want to reinvent the wheel,” Dr Ngubane said. “Our focus now is on the acceleration of the development of Sesotho. Our vision and mission is to be the hub for the advancement of Sesotho at regional, national, and international levels. Collaboration with UKZN is instrumental in achieving this mandate.”

The Academy for Multilingualism said it considers this collaboration historic and groundbreaking because resources will now be invested in the development of Sesotho.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept