Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 November 2022 | Story Moeketsi Mogotsi | Photo Barend Nagel
UFS Social squad
Tyrone Willard, Nkosinathi-Mandla Zulu, Kai Carter, and Mella Ubedoble are the new UFS social media ambassadors. The UFS social media ambassadors initiave was formerly known as the #KovsieCyberSta.

Say hello to the UFS Social Media Squad. The team comprises a few new faces that will grace the UFS social media platforms from time to time. 

The UFS Social Media Squad (also known as SMS) will cover events in and around the UFS, while giving the UFS community insight into these events across the UFS digital platforms. 

This initiative was formerly known as the #KovsieCyberSta programme. You might have seen their faces somewhere before, but now you can hear how they feel about joining the SMS team. 

Introducing Tyrone Willard, Nkosinathi-Mandla Zulu, Kai Carter, and Mella Ubedoble! 



Mandla copy frame



Nkosinathi-Mandla Zulu is a vibrant 21-year-old UFS ambassador working towards his Honours in Journalism and Media Studies. Mandla is a journalist, radio broadcaster, and marketing intern. While established as a runway and editorial model, he is also a social media influencer. He enjoys a good cup of matcha while reading a book. 






kai copy frame



Kai Carter "I'm a tennis player, table tennis player, skateboarder, fashion enthusiast, boy next door, all-around cool kid. Basically, I’m everything and more, google me in five years to see what I'm up to." – Kai signing out!  







Mella Ubedoble: "I have always been creative. I grew up enjoying being crafty with paper and decorating, and this background has led me to an evolving passion for fine arts. All my various creations have a similar foundation, which has a narrative approach where I use them as platforms to tell a conceptually inspired story ... Every experience is an adventure for me, especially if it is kept as media, since I believe that the camera is the keeper of memories." 





Tyrone copy frame new



Tyrone Willard is a master’s student at the University of the Free State. He has had the opportunity to serve the student community in student leadership and entertain the different campuses as an MC and speaker at many institutional and residence events. Tyrone is someone who strives to work hard and set a good example of being an all-rounder and looking after oneself. One will never feel bored or not entertained, as he loves to put and keep people in a positive and light mood. 

 

 

 

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept