Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 November 2022 | Story Lunga Luthuli | Photo Stephen Collett
Prof Francis Petersen
Rector and Vice-Chancellor, Prof Francis Petersen, delivering a recognition and celebratory message to 44 University of the Free State employees who have completed 20 years and more at the institution.

Speaking at the 2022 Long Service Recognition Awards, celebrating ‘the best’, University of the Free State (UFS) Rector and Vice-Chancellor, Prof Francis Petersen, said: “The event is a reminder that the people – the staff – are the university. You are the stars tonight.”

The annual awards ceremony, held in the Centenary Complex on the Bloemfontein Campus on 21 October 2022, is a flagship event for the UFS to recognise and celebrate staff members who have worked at the institution for 20 to 40 years and longer.

Thanking staff, including those who will be retiring at the end of this year, Prof Petersen said: “Thank you for the contribution you have made to the university. As staff, we are the custodians of the university, and while you are here – if you can – add one more brick to build a better institution that you can be proud of.”

Joining the event was Shadrack Shamane, Human Resources Business Partner in the Division of Human Resources, who has worked for the UFS for 40 years. 

He started as a Labourer in the then Department of Provisioning, and in 1992 he was promoted to Supervisor and Driver. 

Shamane said: “Staying at the UFS so long was for a good cause because of the opportunities offered for growth. Over the years, I managed to complete a Certificate in Labour Law in 2004, Advanced Certificate in 2006, and a Postgraduate Diploma in Labour Law in 2008.”

He is also serving as a full-time National Education, Health and Allied Workers' Union shop steward.

Also recognised at this year’s awards was Ilse de Beer, Officer in the Project Management Unit of ICT Services. Ilse joined the UFS in 1987 as a Computer Mainframe Operator responsible for monitoring the mainframe, backups, and printing.

De Beer said: “I started working at Computer Services with the Sperry mainframe in 1987 till the last IBM mainframe, growing with changes in ICT Service, and today we work with data centres.”

De Beer was born on the Bloemfontein Campus in 1967 in what used to be her home – the Vishuis Bond behind the Vishuis hostel. 

She said: “I grew up on campus; it was my playground and I had loads of fun times through the years. In 1975, we moved into our own house, which is now the Cairnhall Private Hospital.”

Closing the event, Prof Petersen said: “I also want to thank your partners and line managers who have stood by you, there has been a lot of input coming from them, providing the necessary support.”

He urged staff who will be retiring at the end of the year to look out for the launch of Vision 130 – ‘an elaboration of the strategic intent of the university to reposition itself for 2034, when it will commemorate its 130th anniversary.’

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept