Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 November 2022 | Story Lunga Luthuli | Photo Stephen Collett
Prof Francis Petersen
Rector and Vice-Chancellor, Prof Francis Petersen, delivering a recognition and celebratory message to 44 University of the Free State employees who have completed 20 years and more at the institution.

Speaking at the 2022 Long Service Recognition Awards, celebrating ‘the best’, University of the Free State (UFS) Rector and Vice-Chancellor, Prof Francis Petersen, said: “The event is a reminder that the people – the staff – are the university. You are the stars tonight.”

The annual awards ceremony, held in the Centenary Complex on the Bloemfontein Campus on 21 October 2022, is a flagship event for the UFS to recognise and celebrate staff members who have worked at the institution for 20 to 40 years and longer.

Thanking staff, including those who will be retiring at the end of this year, Prof Petersen said: “Thank you for the contribution you have made to the university. As staff, we are the custodians of the university, and while you are here – if you can – add one more brick to build a better institution that you can be proud of.”

Joining the event was Shadrack Shamane, Human Resources Business Partner in the Division of Human Resources, who has worked for the UFS for 40 years. 

He started as a Labourer in the then Department of Provisioning, and in 1992 he was promoted to Supervisor and Driver. 

Shamane said: “Staying at the UFS so long was for a good cause because of the opportunities offered for growth. Over the years, I managed to complete a Certificate in Labour Law in 2004, Advanced Certificate in 2006, and a Postgraduate Diploma in Labour Law in 2008.”

He is also serving as a full-time National Education, Health and Allied Workers' Union shop steward.

Also recognised at this year’s awards was Ilse de Beer, Officer in the Project Management Unit of ICT Services. Ilse joined the UFS in 1987 as a Computer Mainframe Operator responsible for monitoring the mainframe, backups, and printing.

De Beer said: “I started working at Computer Services with the Sperry mainframe in 1987 till the last IBM mainframe, growing with changes in ICT Service, and today we work with data centres.”

De Beer was born on the Bloemfontein Campus in 1967 in what used to be her home – the Vishuis Bond behind the Vishuis hostel. 

She said: “I grew up on campus; it was my playground and I had loads of fun times through the years. In 1975, we moved into our own house, which is now the Cairnhall Private Hospital.”

Closing the event, Prof Petersen said: “I also want to thank your partners and line managers who have stood by you, there has been a lot of input coming from them, providing the necessary support.”

He urged staff who will be retiring at the end of the year to look out for the launch of Vision 130 – ‘an elaboration of the strategic intent of the university to reposition itself for 2034, when it will commemorate its 130th anniversary.’

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept