Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 November 2022 | Story Andre Damons | Photo Andre Damons
Prof Motlalepula Matsabisa
Prof Motlalepula Matsabisa, Director of Pharmacology in the Department of Pharmacology at the UFS, hosted the first IKS Bio-Trade Indaba, which took place between 24 and 25 November on the Bloemfontein Campus of the UFS.

The inaugural international Indigenous Knowledge and Bio-Trade Indaba, hosted by the University of the Free State (UFS) in collaboration with the Technology Innovation Agency (TIA) – an entity of the Department of Science and Innovation (DSI) – is the ideal platform for various stakeholders to network and share knowledge on current developments in indigenous knowledge research and product development, biodiversity, conservation, innovation, and commercialisation of the IK-based researched products. 

The IKS Bio-Trade Indaba was championed by the university’s African Medicines Innovation and Technology Development Platform (AMITD), which is funded by TIA. AMITD was established to stimulate economic growth by providing science-based solutions and developing technologies that would utilise indigenous knowledge and South African biodiversity to produce high-quality African traditional-medicine-based proprietary products, focusing on priority diseases. AMITD is a national leader in research, development, and formulation research on traditional medicines and has a strong history in IKS research, community collaboration, and participation initiatives, as well as partnerships with industry on herbal medicines.

The indaba, which took place from 24 to 25 November, was a success, opening much-needed dialogue and engagement on the role of IK-based knowledge in research and commercialisation. Going forward, the indaba will be a vital platform to enhance the role of IKS in inclusive development and transformation.

African traditional medicine should be internationally recognised

Prof Motlalepula Matsabisa, Director of Pharmacology in the UFS Department of Pharmacology and AMITD, said he has a special interest in the pharmacology of traditional medicines and that he wants to see more national, continental, and international collaboration so that the dream of making ATM internationally recognised and a global force can be realised. 

“How do we develop new drugs and medicines based on the knowledge we have. We do this without compromising on good all-inclusive science on ATM. We should take the science and put it on the global stage so that all people will begin to respect it,” said Prof Matsabisa. 

According to him, research conducted by AMITD should address national research priorities, community research needs and aspirations to respond to industry research questions and challenges and develop products, intellectual property (IP), as well as commercialisation. “Research needs to have a societal impact and must impact the quality of life of people. We do responsive research that needs to address old diseases, new diseases, neglected diseases, current pandemics, as well as new and re-emerging pandemics.” 

Elevation of IKS profile can no longer be delayed
 
Dr Vuyisile Phehane, Executive: Bio-Economy at the TIA, said the indaba came at a time when the elevation of the profile of IKS can no longer be delayed. TIA acknowledges the rich, largely untapped source of knowledge within communities that has yet to be fully exploited for the economic and social benefit of particularly the underserved regions of the country, and it should be systematically well researched. 

Dr Vuysile Phehane
Dr Phehane, gave a message of support from TIA, saying the indaba came at a time when the elevation of the profile of IKS can no longer be delayed. (Photo: Andre Damons)


“Sectoral support priorities in agriculture, manufacturing, health innovations, and allied health cannot be overlooked, and neither can the various master plans created to support industrial sectors. This thought leadership has a direct bearing on what we are doing here, engaging in dialogue to shape our future, and seeking ways to collaborate and build long-lasting partnerships in the space of IKS. These partnerships not only serve us in the country, but also on the African continent,” said Dr Phehane. 

According to him, TIA played the role of industry builder and sought to increase its efforts to grow and enhance the role of IKS in inclusive development and transformation. The successful commercialisation of all indigenous knowledge-based projects involving the use of indigenous plants requires the capacity to commercially cultivate these plants. 

Dr Phehane said TIA funded AMITD to ensure that the products of promising indigenous knowledge innovations are safe, effective, and of consistently high quality. “This platform seeks to address generations of market failure by bringing IK into the mainstream of commercialisation and truly equitable benefit sharing. Going forward, 20% of our annual MTEF allocation will be channelled towards IK initiatives, which is significant. This is testament to our commitment to IKS.”

The two-day indaba hosted various panel discussions on multiple aspects of IKS research and developments in human and plant health. Among these were discussions on cannabis research to mitigate cancer multidrug resistance, phytoconstituents for the treatment of diabetes, the development of PHELA, a plant-based product as a treatment for COVID-19, natural product-based colon regulator commercialisation, the development of cannabis and other medicinal plants in wound healing and developing hydrogels, as well as the development of IK-based herbal pesticides.

Discussions also focused on new developments in the indigenous health infusion industry, developments in medicine regulations and IK-based clinical trials in South Africa, as well as African medicines research internationalisation. International panellists included Prof Minke Tang (Beijing University of Chinese Medicine), Dr Samuel Obakiro (HOD, Department of Pharmacology, Busitema University, Uganda), and Dr Kofi Donkor (Centre for Plant Medicine Research, Mampong, Ghana), all of whom shared experiences on IKS-related research in their respective countries.

IKS one of the areas targeted for investment and growth 

Dr Glen Taylor, Senior Director: Research Development at the UFS, said the Department of Pharmacology is one of the fastest-growing departments in the Faculty of Health Sciences at the UFS, and attracts a large number of applications from national and international scholars largely due to a very understated Prof Matsabisa.

“We always look at areas where we need to invest in the future and grow, and IKS is one of those areas we targeted and invested in significantly. Through the research and work in IKS, this is done to reposition the institution as a research-led university that is relevant to its communities and societies.” 
The TIA UFS IKS International Indaba was funded by the TIA IKS unit and the Department of Pharmacology – AMITD platform.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept