Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 November 2022 | Story Anthony Mthembu | Photo Supplied
Lerato Pitso
Lerato Pitso, who will represent Lesotho in the Miss Supranational competition in 2023.

Lerato Pitso, a Bachelor of Social Sciences student at the University of the Free State (UFS), has been selected to represent her home country of Lesotho in the prestigious Miss Supranational competition, which will be held in Poland in 2023. “I’m still nervous about the fact that I have been selected to represent my country in this competition. However, the selection means that I have a lot of people who actually believe in me,” Pitso stated.

Miss Supranational

Miss Supranational is an internationally recognised beauty pageant overseen by the World Beauty Association.This is the third time that a UFS student has participated in this international competition. Earlier this year Boitumelo Sehlotho, a Bachelor of Accounting student at the UFS, who was also named the Face of Lesotho in 2019, represented her country at the Miss Supranational pageant 2022.  Thato Mosehle, a graduate from the Faculty of Health Sciences, was runner-up in the Miss Supranational pageant held in Poland in 2021.

Pitso perceives the pageant as a platform to encourage young women to do more to change the world. She was selected to represent Lesotho in the competition based on the contributions she made in and around her community.

Community Engagement

Pitso’s community engagement includes participation in a digital inclusion campaign in Lesotho. “The campaign intended to involve accountable ministries in addressing technological issues to empower students with technological skills to be competent for the global environment. Pitso was also involved in the Meal in a Jar initiative, which was run by the Office for International Affairs at the UFS. Through this initiative, high school learners in the Grassland community in Bloemfontein were taught to recycle materials, and to produce new products which they could then sell for profit. “The project aimed to spark an entrepreneurial mindset,” said Pitso. In addition, she has also worked with the SHE-HIVE Association, a non-governmental organisation based in Maseru, Lesotho, which offers counselling and legal assistance to those who have been affected by gender-based violence. As such, Pitso asserts that she is the best to represent her nation based on the work she has put in.

Preparing for the Miss Supranational stage

Pitso said getting ready for a competition of this magnitude is a huge undertaking. “Preparation for the big stage includes rigorous training in which one learns to walk in a certain manner, and a commitment to the gym in order to be physically fit for the competition.” She also asserts that taking care of her mental health is a priority before walking on that stage.

It is also important to note that the last two winners of the competition are from Africa, and this serves as motivation for Pitso. “The fact that people who come from a similar society to me could attain the prize makes me believe in myself. It means that it’s also possible for me to put in the work and excel in the competition,” she said.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept