Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 October 2022 | Story Anthony Mthembu | Photo iFlair Photography
Science for the Future (S4F) summit
Attending the Science for the Future (S4F) summit in the Centenary Complex on the Bloemfontein Campus were, from the left: Back: Dr Cobus van Breda (S4F Programme Director), Amaria Reynders (S4F Family Math Manager), Dr Glynnis Daries (Sol Plaatje University), Prof Francis Petersen (Rector and Vice-Chancellor of the UFS), Tarin Roberts (Nelson Mandela University), Adolph Tomes (Acting Chief Executive Office, SANRAL). In the front are, from the left: Prof Angela James (University of KwaZulu-Natal), Heidi Harper (General Manager Skills Development, SANRAL), Prof Jogymol Alex (Walter Sisulu University).

Teachers from across the country and representatives of six other universities recently gathered at the University of the Free State (UFS) to celebrate the achievements of the Science-for-the-Future (S4F) Teacher Professional Development programmes as well as the successful collaboration between the UFS and other universities.  

The Science-for-the-Future unit in the Faculty of Education hosted a summit in the Centenary Complex on the Bloemfontein Campus on 30 September 2022. The Rector and Vice-Chancellor of the UFS, Prof Francis Petersen, delivered the keynote address at the summit. Representatives from the South African National Roads Agency (SANRAL) – the official sponsors of the Science for the Future initiative – were also present, along with 300 teachers and representatives from the Department of Basic Education. 

In his welcoming address, Prof Patrick Mafora, Vice-Dean of the Faculty of Education, said the initiative exemplifies the UFS’ institutional goals, such as increasing our contribution to local, regional, and global knowledge.  It also supports development and social justice through engaged scholarship.

Improving the quality of teaching and learning for Math and Science 

Dr Cobus van Breda, Programme Director of S4F and Project Manager of the Universities Collaboration initiative, provided background regarding the programmes and stated that “… we know from research that there are many factors that prevent learners in rural areas from excelling in Mathematics and Science. These include subject content knowledge, lack of teaching resources at school and at home, along with a lack of parental involvement, among others.” He said the project aims to address the challenges related to Mathematics and Science teaching and learning in the country. One of the ways in which this goal can be accomplished, is by empowering teachers and learners with the necessary tools, including resources and knowledge, to create a successful learning space for Mathematics and Science. “Our mission is the advancement of innovative and effective Mathematics and Science teaching and learning,” he indicated.

Representatives from the DBE and other institutions were also given the opportunity to highlight the impact of the initiative in their respective institutions. “Our public schooling system, especially in poor and rural areas, is in crisis – more especially in the Eastern Cape. This is due to a lack of learning support and a lack of sufficient skills. This created a need for innovative, sustainable, and tactical solutions to improve the quality of teaching and learning for Math and Science. The Science for the Future initiative is exactly that,” explained Prof Jogy Alex from the Walter Sisulu University.

Making a difference and changing people’s lives 

During his keynote address, Prof Petersen indicated that he preferred the word ‘co-creation’ instead of ‘collaboration’, and he urged the “sponsors not only to contribute funding, but really contribute towards the intellectual project of this programme”. Surely, they have learnings and some ideas that can strengthen and expand the project, he said. Prof Petersen also alluded to the fact that SANRAL contributes towards a Research Chair in Science and Mathematics Education in the Faculty of Education, as well as the fact that, at the university, “we don’t exist to create knowledge for the sake of knowledge; we exist to create knowledge so that the knowledge can make an impact”. He referred to the project as an example of how knowledge is converted to practical application.  


Mr Adolph Tomes, Acting Business Operations Executive at SANRAL, also commended the initiative and its impact. “Although we as SANRAL are the funders and we get praise for being funders, this is a phenomenal project, and it is making a difference and changing people’s lives.” 

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept