Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 October 2022 | Story Anthony Mthembu | Photo iFlair Photography
Science for the Future (S4F) summit
Attending the Science for the Future (S4F) summit in the Centenary Complex on the Bloemfontein Campus were, from the left: Back: Dr Cobus van Breda (S4F Programme Director), Amaria Reynders (S4F Family Math Manager), Dr Glynnis Daries (Sol Plaatje University), Prof Francis Petersen (Rector and Vice-Chancellor of the UFS), Tarin Roberts (Nelson Mandela University), Adolph Tomes (Acting Chief Executive Office, SANRAL). In the front are, from the left: Prof Angela James (University of KwaZulu-Natal), Heidi Harper (General Manager Skills Development, SANRAL), Prof Jogymol Alex (Walter Sisulu University).

Teachers from across the country and representatives of six other universities recently gathered at the University of the Free State (UFS) to celebrate the achievements of the Science-for-the-Future (S4F) Teacher Professional Development programmes as well as the successful collaboration between the UFS and other universities.  

The Science-for-the-Future unit in the Faculty of Education hosted a summit in the Centenary Complex on the Bloemfontein Campus on 30 September 2022. The Rector and Vice-Chancellor of the UFS, Prof Francis Petersen, delivered the keynote address at the summit. Representatives from the South African National Roads Agency (SANRAL) – the official sponsors of the Science for the Future initiative – were also present, along with 300 teachers and representatives from the Department of Basic Education. 

In his welcoming address, Prof Patrick Mafora, Vice-Dean of the Faculty of Education, said the initiative exemplifies the UFS’ institutional goals, such as increasing our contribution to local, regional, and global knowledge.  It also supports development and social justice through engaged scholarship.

Improving the quality of teaching and learning for Math and Science 

Dr Cobus van Breda, Programme Director of S4F and Project Manager of the Universities Collaboration initiative, provided background regarding the programmes and stated that “… we know from research that there are many factors that prevent learners in rural areas from excelling in Mathematics and Science. These include subject content knowledge, lack of teaching resources at school and at home, along with a lack of parental involvement, among others.” He said the project aims to address the challenges related to Mathematics and Science teaching and learning in the country. One of the ways in which this goal can be accomplished, is by empowering teachers and learners with the necessary tools, including resources and knowledge, to create a successful learning space for Mathematics and Science. “Our mission is the advancement of innovative and effective Mathematics and Science teaching and learning,” he indicated.

Representatives from the DBE and other institutions were also given the opportunity to highlight the impact of the initiative in their respective institutions. “Our public schooling system, especially in poor and rural areas, is in crisis – more especially in the Eastern Cape. This is due to a lack of learning support and a lack of sufficient skills. This created a need for innovative, sustainable, and tactical solutions to improve the quality of teaching and learning for Math and Science. The Science for the Future initiative is exactly that,” explained Prof Jogy Alex from the Walter Sisulu University.

Making a difference and changing people’s lives 

During his keynote address, Prof Petersen indicated that he preferred the word ‘co-creation’ instead of ‘collaboration’, and he urged the “sponsors not only to contribute funding, but really contribute towards the intellectual project of this programme”. Surely, they have learnings and some ideas that can strengthen and expand the project, he said. Prof Petersen also alluded to the fact that SANRAL contributes towards a Research Chair in Science and Mathematics Education in the Faculty of Education, as well as the fact that, at the university, “we don’t exist to create knowledge for the sake of knowledge; we exist to create knowledge so that the knowledge can make an impact”. He referred to the project as an example of how knowledge is converted to practical application.  


Mr Adolph Tomes, Acting Business Operations Executive at SANRAL, also commended the initiative and its impact. “Although we as SANRAL are the funders and we get praise for being funders, this is a phenomenal project, and it is making a difference and changing people’s lives.” 

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept