Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 October 2022 | Story Anthony Mthembu | Photo iFlair Photography
Science for the Future (S4F) summit
Attending the Science for the Future (S4F) summit in the Centenary Complex on the Bloemfontein Campus were, from the left: Back: Dr Cobus van Breda (S4F Programme Director), Amaria Reynders (S4F Family Math Manager), Dr Glynnis Daries (Sol Plaatje University), Prof Francis Petersen (Rector and Vice-Chancellor of the UFS), Tarin Roberts (Nelson Mandela University), Adolph Tomes (Acting Chief Executive Office, SANRAL). In the front are, from the left: Prof Angela James (University of KwaZulu-Natal), Heidi Harper (General Manager Skills Development, SANRAL), Prof Jogymol Alex (Walter Sisulu University).

Teachers from across the country and representatives of six other universities recently gathered at the University of the Free State (UFS) to celebrate the achievements of the Science-for-the-Future (S4F) Teacher Professional Development programmes as well as the successful collaboration between the UFS and other universities.  

The Science-for-the-Future unit in the Faculty of Education hosted a summit in the Centenary Complex on the Bloemfontein Campus on 30 September 2022. The Rector and Vice-Chancellor of the UFS, Prof Francis Petersen, delivered the keynote address at the summit. Representatives from the South African National Roads Agency (SANRAL) – the official sponsors of the Science for the Future initiative – were also present, along with 300 teachers and representatives from the Department of Basic Education. 

In his welcoming address, Prof Patrick Mafora, Vice-Dean of the Faculty of Education, said the initiative exemplifies the UFS’ institutional goals, such as increasing our contribution to local, regional, and global knowledge.  It also supports development and social justice through engaged scholarship.

Improving the quality of teaching and learning for Math and Science 

Dr Cobus van Breda, Programme Director of S4F and Project Manager of the Universities Collaboration initiative, provided background regarding the programmes and stated that “… we know from research that there are many factors that prevent learners in rural areas from excelling in Mathematics and Science. These include subject content knowledge, lack of teaching resources at school and at home, along with a lack of parental involvement, among others.” He said the project aims to address the challenges related to Mathematics and Science teaching and learning in the country. One of the ways in which this goal can be accomplished, is by empowering teachers and learners with the necessary tools, including resources and knowledge, to create a successful learning space for Mathematics and Science. “Our mission is the advancement of innovative and effective Mathematics and Science teaching and learning,” he indicated.

Representatives from the DBE and other institutions were also given the opportunity to highlight the impact of the initiative in their respective institutions. “Our public schooling system, especially in poor and rural areas, is in crisis – more especially in the Eastern Cape. This is due to a lack of learning support and a lack of sufficient skills. This created a need for innovative, sustainable, and tactical solutions to improve the quality of teaching and learning for Math and Science. The Science for the Future initiative is exactly that,” explained Prof Jogy Alex from the Walter Sisulu University.

Making a difference and changing people’s lives 

During his keynote address, Prof Petersen indicated that he preferred the word ‘co-creation’ instead of ‘collaboration’, and he urged the “sponsors not only to contribute funding, but really contribute towards the intellectual project of this programme”. Surely, they have learnings and some ideas that can strengthen and expand the project, he said. Prof Petersen also alluded to the fact that SANRAL contributes towards a Research Chair in Science and Mathematics Education in the Faculty of Education, as well as the fact that, at the university, “we don’t exist to create knowledge for the sake of knowledge; we exist to create knowledge so that the knowledge can make an impact”. He referred to the project as an example of how knowledge is converted to practical application.  


Mr Adolph Tomes, Acting Business Operations Executive at SANRAL, also commended the initiative and its impact. “Although we as SANRAL are the funders and we get praise for being funders, this is a phenomenal project, and it is making a difference and changing people’s lives.” 

News Archive

Is milk really so well-known, asks UFS’s Prof. Osthoff
2011-03-17

Prof. Garry Osthoff
Photo: Stephen Collett

Prof. Garry Osthoff opened a whole new world of milk to the audience in his inaugural lecture, Milk: the well-known (?) food, in our Department of Microbial, Biochemical and Food Biotechnology of the Faculty of Natural and Agricultural Sciences.

Prof. Osthoff has done his research in protein chemistry, immuno-chemistry and enzymology at the Council for Scientific and Industrial Research (CSIR) in Pretoria and post-doctoral research at the Bowman-Grey School of Medicine, North Carolina, USA. That was instrumental in establishing food chemistry at the university.
 
He is involved in chemical aspects of food, with a focus on dairy science and technology. He is also involved in the research of cheese processing as well as milk evolution and concentrated on milk evolution in his lecture. Knowledge of milk from dairy animals alone does not provide all the explanations of milk as food.
 
Some aspects he highlighted in his lecture were that milk is the first food to be utilised by young mammals and that it is custom-designed for each species. “However, mankind is an opportunist and has found ways of easy access to food by the practice of agriculture, where plants as well as animals were employed or rather exploited,” he said.
 
The cow is the best-known milk producer, but environmental conditions forced man to select other animals. In spite of breeding selection, cattle seem not to have adapted to the most extreme conditions such as high altitudes with sub-freezing temperatures, deserts and marshes.
 
Prof. Osthoff said the consumption of the milk as an adult is not natural; neither is the consumption of milk across species. This practice of mankind may often have consequences, when signs of malnutrition or diseases are noticed. Two common problems are an allergy to milk and lactose intolerance.
 
Allergies are normally the result of an immune response of the consumer to the foreign proteins found in the milk. In some cases it might help to switch from one milk source to another, such as switching from cow’s milk to goat’s milk.
 
Prof. Osthoff said lactose intolerance – the inability of adult humans to digest lactose, the milk sugar – is natural, as adults lose that ability to digest lactose. The symptoms of the condition are stomach cramps and diarrhoea. This problem is mainly found in the warmer climates of the world. This could be an indication of early passive development of dairy technology. In these regions milk could not be stored in its fresh form, but in a fermented form, in which case the lactose was pre-digested by micro-organisms, and the human population never adapted to digesting lactose in adulthood.
 
According to Prof. Osthoff, it is basically the lactose in milk that has spurred dairy technology. Its fermentation has resulted in the development of yoghurts and all the cheeses that we know. In turn, the intolerance to lactose has spurred a further technological solution: lactose-free milk is currently produced by pre-digestion of lactose with enzymes.
 
It was realised that the milks and products from different species differed in quality aspects such as keeping properties and taste. It was also realised that the nutritional properties differed as well as their effects on health. One example is the mentioned allergy against cow’s milk proteins, which may be solved by the consumption of goat’s milk. The nutritional benefits and technological processing of milk aroused an interest in more information, and it was realised that the information gained from human milk and that of the few domesticated species do not provide a complete explanation of the properties of milk as food. Of the 250 species of milk which have been studied, only the milk of humans and a few domesticated dairy animals has been studied in detail.

Media Release
15 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept