Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 October 2022 | Story Anthony Mthembu | Photo iFlair Photography
Science for the Future (S4F) summit
Attending the Science for the Future (S4F) summit in the Centenary Complex on the Bloemfontein Campus were, from the left: Back: Dr Cobus van Breda (S4F Programme Director), Amaria Reynders (S4F Family Math Manager), Dr Glynnis Daries (Sol Plaatje University), Prof Francis Petersen (Rector and Vice-Chancellor of the UFS), Tarin Roberts (Nelson Mandela University), Adolph Tomes (Acting Chief Executive Office, SANRAL). In the front are, from the left: Prof Angela James (University of KwaZulu-Natal), Heidi Harper (General Manager Skills Development, SANRAL), Prof Jogymol Alex (Walter Sisulu University).

Teachers from across the country and representatives of six other universities recently gathered at the University of the Free State (UFS) to celebrate the achievements of the Science-for-the-Future (S4F) Teacher Professional Development programmes as well as the successful collaboration between the UFS and other universities.  

The Science-for-the-Future unit in the Faculty of Education hosted a summit in the Centenary Complex on the Bloemfontein Campus on 30 September 2022. The Rector and Vice-Chancellor of the UFS, Prof Francis Petersen, delivered the keynote address at the summit. Representatives from the South African National Roads Agency (SANRAL) – the official sponsors of the Science for the Future initiative – were also present, along with 300 teachers and representatives from the Department of Basic Education. 

In his welcoming address, Prof Patrick Mafora, Vice-Dean of the Faculty of Education, said the initiative exemplifies the UFS’ institutional goals, such as increasing our contribution to local, regional, and global knowledge.  It also supports development and social justice through engaged scholarship.

Improving the quality of teaching and learning for Math and Science 

Dr Cobus van Breda, Programme Director of S4F and Project Manager of the Universities Collaboration initiative, provided background regarding the programmes and stated that “… we know from research that there are many factors that prevent learners in rural areas from excelling in Mathematics and Science. These include subject content knowledge, lack of teaching resources at school and at home, along with a lack of parental involvement, among others.” He said the project aims to address the challenges related to Mathematics and Science teaching and learning in the country. One of the ways in which this goal can be accomplished, is by empowering teachers and learners with the necessary tools, including resources and knowledge, to create a successful learning space for Mathematics and Science. “Our mission is the advancement of innovative and effective Mathematics and Science teaching and learning,” he indicated.

Representatives from the DBE and other institutions were also given the opportunity to highlight the impact of the initiative in their respective institutions. “Our public schooling system, especially in poor and rural areas, is in crisis – more especially in the Eastern Cape. This is due to a lack of learning support and a lack of sufficient skills. This created a need for innovative, sustainable, and tactical solutions to improve the quality of teaching and learning for Math and Science. The Science for the Future initiative is exactly that,” explained Prof Jogy Alex from the Walter Sisulu University.

Making a difference and changing people’s lives 

During his keynote address, Prof Petersen indicated that he preferred the word ‘co-creation’ instead of ‘collaboration’, and he urged the “sponsors not only to contribute funding, but really contribute towards the intellectual project of this programme”. Surely, they have learnings and some ideas that can strengthen and expand the project, he said. Prof Petersen also alluded to the fact that SANRAL contributes towards a Research Chair in Science and Mathematics Education in the Faculty of Education, as well as the fact that, at the university, “we don’t exist to create knowledge for the sake of knowledge; we exist to create knowledge so that the knowledge can make an impact”. He referred to the project as an example of how knowledge is converted to practical application.  


Mr Adolph Tomes, Acting Business Operations Executive at SANRAL, also commended the initiative and its impact. “Although we as SANRAL are the funders and we get praise for being funders, this is a phenomenal project, and it is making a difference and changing people’s lives.” 

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept