Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 October 2022 | Story Gerda-Marié van Rooyen
Gali Mokgosi
Gali Mokgosi uses her passion for students and films to promote conversations about mental health and how campus life inside and outside the classroom – including residence life – affects and is affected by the physical, mental, and spiritual health of its students.

Using her experience in theatre and her passion for students, Gali Mokgosi, Residence Head of House Madelief, helps students explore and implement skills to cope with the demands of university life. A Health and Wellness coordinator for residence life, she helps improve their lives by teaching them the value of sufficient sleep, nutrition, exercise, recreation, positive coping strategies, healthy social and sexual relationships, and a sense of belonging within residences.

Mentoring and supporting university students

As a former English lecturer for first-year students, this go-getter saw an urgency to mentor and support university students. In 2016, she landed a job as residence head and resigned from lecturing to focus on theatre and residence affairs. Soon after her appointment, she and her colleague, Nthabiseng Mokhethi, Residence Head of House Ardour, were asked to coordinate the Residence Life Health and Wellness portfolio at a time when there were many suicide attempts and mental health issues, and drug and alcohol abuse plagued residences.

“Our main responsibility as Health and Wellness coordinators is to support Residence Committee Health and Wellness representatives (RCHW) in their respective residences. We facilitate training for RCHW peers and help them to think broadly about how campus life inside and outside the classroom – including residence life – affects and is affected by the physical, mental, and spiritual health of its students.”

Using film to address topical issues

With an honours degree in Drama and Theatre Arts, this UFS alumna knew she had to adapt to virtual means for her portfolio to continue supporting students during COVID-19.

“There was a need for intervention, and I saw an opportunity to close this gap by helping students through their challenges using films. I wrote films that directly address the challenges students were/are facing. Being a residence head, content for my films is always under my nose, and the storyline is undeniably relevant to them.”

Mokgosi wrote and produced four films for the various student support offices, with the help of Shibashiba Moabelo, Institutional HIV/AIDS Programme Coordinator at Kovsie Health, and Pulane Malefane, Assistant Director: Residence Life. These films are, I am, Triggers, Versus me, and Monate jou lekker ding.

This scriptwriter says when students can identify themselves in a story, they tend to gravitate towards a solution as suggested by the story. Students across the University of the Free State’s (UFS) three campuses act in the films. After watching a film, students engage with each other and receive tools to explore the story and reflect on the outcomes as suggested by the film.

Proving her sensitivity for inclusiveness, she had an opportunity to be part of the art skills exchange programme in Deaf theatre at Gallaudet University, Washington, DC. She also presented a research paper in Athens, Greece.

Mokgosi is looking forward to experiment with Deaf films in 2023.

Asked how she looks after her mental health, she reveals: “I take care of my mental health through prayer and meditation. I believe the first place to prosper is through my spiritual life. God is my strength from day to day. He is my all in all. Without Him, I will fall.”

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept