Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 October 2022 | Story Gerda-Marié van Rooyen
Gali Mokgosi
Gali Mokgosi uses her passion for students and films to promote conversations about mental health and how campus life inside and outside the classroom – including residence life – affects and is affected by the physical, mental, and spiritual health of its students.

Using her experience in theatre and her passion for students, Gali Mokgosi, Residence Head of House Madelief, helps students explore and implement skills to cope with the demands of university life. A Health and Wellness coordinator for residence life, she helps improve their lives by teaching them the value of sufficient sleep, nutrition, exercise, recreation, positive coping strategies, healthy social and sexual relationships, and a sense of belonging within residences.

Mentoring and supporting university students

As a former English lecturer for first-year students, this go-getter saw an urgency to mentor and support university students. In 2016, she landed a job as residence head and resigned from lecturing to focus on theatre and residence affairs. Soon after her appointment, she and her colleague, Nthabiseng Mokhethi, Residence Head of House Ardour, were asked to coordinate the Residence Life Health and Wellness portfolio at a time when there were many suicide attempts and mental health issues, and drug and alcohol abuse plagued residences.

“Our main responsibility as Health and Wellness coordinators is to support Residence Committee Health and Wellness representatives (RCHW) in their respective residences. We facilitate training for RCHW peers and help them to think broadly about how campus life inside and outside the classroom – including residence life – affects and is affected by the physical, mental, and spiritual health of its students.”

Using film to address topical issues

With an honours degree in Drama and Theatre Arts, this UFS alumna knew she had to adapt to virtual means for her portfolio to continue supporting students during COVID-19.

“There was a need for intervention, and I saw an opportunity to close this gap by helping students through their challenges using films. I wrote films that directly address the challenges students were/are facing. Being a residence head, content for my films is always under my nose, and the storyline is undeniably relevant to them.”

Mokgosi wrote and produced four films for the various student support offices, with the help of Shibashiba Moabelo, Institutional HIV/AIDS Programme Coordinator at Kovsie Health, and Pulane Malefane, Assistant Director: Residence Life. These films are, I am, Triggers, Versus me, and Monate jou lekker ding.

This scriptwriter says when students can identify themselves in a story, they tend to gravitate towards a solution as suggested by the story. Students across the University of the Free State’s (UFS) three campuses act in the films. After watching a film, students engage with each other and receive tools to explore the story and reflect on the outcomes as suggested by the film.

Proving her sensitivity for inclusiveness, she had an opportunity to be part of the art skills exchange programme in Deaf theatre at Gallaudet University, Washington, DC. She also presented a research paper in Athens, Greece.

Mokgosi is looking forward to experiment with Deaf films in 2023.

Asked how she looks after her mental health, she reveals: “I take care of my mental health through prayer and meditation. I believe the first place to prosper is through my spiritual life. God is my strength from day to day. He is my all in all. Without Him, I will fall.”

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept