Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 October 2022 | Story Nonsindiso Qwabe
Qwaqwa research conference
Unpacking the role of research in society. From left: Lukhona Mnguni, Prof Pearl Sithole, Prof Dipane Hlalele, and Prof Percy Hlangothi

From socio-political dynamics and creativity in the Basotho language, to the improvement of water conditions in the upper Tugela River and antifungal studies of Cydonia oblonga extracts (known as kwepere in Sesotho) – these are just some of the highlights of the research presented at the UFS Qwaqwa Campus research conference.

With a theme focused on research as a tool for the betterment of humanity, the two-day research conference provided a space for the campus to showcase its research for sustainable development in the Afromontane region and beyond, conducted by academics and postgraduate students alike. The two-day event comprised oral student and staff presentations and sessions, with shorter presentations on the second day.

As global trends continue to challenge society to solve big and immediate problems, there has been a natural turn towards research that can make a lasting impact on local and global platforms. Through student and academic presentations, the conference provided insights into how the UFS is playing an active role in responding to some of these challenges by being outwardly focused in their approaches to problem-solving.

Balancing the sciences, industry, and society

With an intentional focus on interdisciplinarity, the guest speakers – all in different science fields – offered solutions to conducting impactful research through the lens of their own work. Prof Percy Hlangothi is currently an Associate Professor of Physical and Polymer Chemistry at Nelson Mandela University (NMU) and inaugural Director of the Centre for Rubber Science and Technology, a research entity in the Faculty of Science at the same institution. By describing his work, particularly on the production of tyres, he focused on the importance of achieving rapport between the sciences, industry, and society.

The second keynote speaker was Lukhona Mnguni, a governance, politics and development specialist and PhD candidate in Political Science at the University of KwaZulu-Natal. He currently serves as the Head of Policy and Research at the Rivonia Circle. Mnguni focused his talk on the breakthroughs of research as stemming from people, and not academic disciplines themselves. Mnguni issued a hard call towards a reflection of what the intellectual and scholarly quest for knowledge is doing to society, emphasising the need for societal involvement in issues pertaining to crises in society.

Prof Dipane Hlalele, Professor of Education at UKZN and a C2 NRF-rated researcher (2022-2027), was the final speaker for the conference. He anchored his talk on the importance of having philosophical frames behind scholarship, and spoke against approaching rural areas as lacking knowledge, to a stance of mutual understanding of knowledge schemes and models of intervention.

Campus focused on making an impact outwardly

Marking the opening of the conference, Dr Martin Mandew, Qwaqwa Campus Principal, said the campus was trying to punch above its weight and evolve its research and knowledge outputs. “We cannot just be consumers of knowledge and finished products that come from abroad. We have to produce our own knowledge that speaks to our own unique circumstances and makes complete sense of our capacities,” he said.

The conference also served as the launch platform for the campus research strategy. During the launch, Prof Pearl Sithole, Campus Vice-Principal: Academic and Research, said the strategy was centred on five frontiers. “We are trying to align what we do outwardly in terms of impact and are working on ourselves as per the commitments of the strategy. We do this excellently, because we want to advance knowledge – there is no question about that – and we put pressure on each other to do that. It does not mean that it will be easy, but we are going to engineer it such that originality and the advancement of knowledge is happening.”

The conference concluded with a prize-giving session for the best oral student presentations.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept