Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 October 2022 | Story Dr Cinde Greyling | Photo Iflair Photography
UFS Business school
The UFS Business School.

The University of the Free State Business School (UFSBS) was established in the late 1990s and is fully accredited by the Council on Higher Education (CHE) and the Central and East European Management  Development Association (CEEMAN). Since its inception, the school has operated as a boutique business school focusing on personal attention to adult learners.

Late 2021, the UFSBS appointed a new Director, Dr Udesh Pillay. In conjunction with the change in leadership, the UFSBS is embarking on a new strategic journey, while maintaining the focus on its core business – in other words, its official academic offerings. The strategic journey of the UFSBS has been underway for the past year, and significant time has been allocated to the recurriculation of programme offerings; decolonisation of the academic agenda; and orientating the UFSBS so that it makes a larger practical contribution to the SME sector locally and nationally, especially in relation to business continuity and resilience in the wake of unforeseen externalities.  These developments will ensure that the UFSBS remains a premier academic institution and contributes to the success of South Africa and its people. It also ensures that the twin principles of academic excellence and social justice become mutually reinforcing.

The UFSBS’s strategic direction for the next five years aligns neatly with the Vision 130. By 2034 – when the university commemorates its 130th anniversary – the UFS wants to be recognised and acknowledged by peers and society as a top-tier university in South Africa. Similarly, the UFSBS has aspirations to become a top-ten business school in SA over the next five years.

Given the history of South Africa, it is of utmost importance to empower people to add value, particularly in the field of business and management leadership. The UFSBS will contribute to building an ecosystem of entrepreneurialism, with the more traditional academic programmes based upon the conventional practices of teaching and learning, research, and mentorship to be supplemented by ‘opportunity-driven initiatives’, such as executive education, consulting support, coaching, incubation services, and the commercialisation of intellectual property.

Globally, the Fourth Industrial Revolution (4IR) has catalysed processes of digital transformation in business, to which the UFSBS will align to ensure that students are equipped with the relevant knowledge and skills in a fast-changing, technology-enabled world. With the support of the Centre for Business Dynamics (CBD) housed in the UFSBS; the establishment of the Small Business Academy (SBA) in early 2024 in the UFSBS; the soon-to-be-established High-Growth Business Incubator (in collaboration with the NAS faculty); and with the process of strengthening relationships with the Paradys Experimental Farm gaining traction, a differentiated medium has been created to nurture responsible,  ethical, and socially conscious business leaders. The foundation then – to create the next generation of business leaders and entrepreneurs to become agents of change and value co-creators for business and society – will thus have begun.

The UFSBS will align to ensure that students are equipped with relevant knowledge and skills in a fast-changing, technology-enabled world. – Dr Udesh Pillay.
The slogan, ‘BE WORTH MORE’, embodies what the UFSBS strives for, and is consistent with new developments in global discourses, which are rethinking and transforming many of the traditional dogmas that have informed the mandates of business schools. 

As a critical bridge between academia and business, the UFSBS is uniquely poised to reimagine a better and intelligent future that is data-informed, collaborative, innovative, and inclusive.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept