Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 October 2022 | Story NONSINDISO QWABE | Photo Rio Button
The Lowveld serotine bat, named Neoromicia hlandzeni
The Lowveld serotine bat, named Neoromicia hlandzeni.

Biological expeditions to the unexplored central highlands of Angola between 2016 and 2019 led to the discovery of a new tiny, white-thumbed bat species from Eswatini by Prof Peter John Taylor from the UFS Department of Zoology and Entomology and the Afromontane Research Unit (ARU), together with colleagues from the University of Eswatini (UNESWA) and other collaborators.

The bat species, named Neoromicia hlandzeni or the Lowveld serotine bat – after the Lowveld of Eswatini (eHlandzeni) – is the first new animal species to be discovered in Eswatini and given a siSwati name. The Lowveld serotine bat is tiny at four grams, has a distinctive white thumb pad, and occurs in Eswatini, South Africa, Zimbabwe, and Mozambique.

Bats make up a quarter of all mammalian biodiversity. With modern technology and the exploration of previously inaccessible regions of Africa, the rate of discovery of both animal and plant species is accelerating.

According to Prof Taylor, the Lowveld serotine bat is a new species to science. The specimen from which the species was named was collected in the lowlands of Eswatini in 2005. “Later collections of bats from the highlands of Angola, undertaken by myself and students, revealed the fact that the highland and lowland forms were actually different species. Since there was already a name for the highland bat, we needed to find a new name for the lowland bat from Eswatini and South Africa, hence it is called the Lowveld serotine bat,” he said.

The importance of integrative taxonomy, local collaboration, and biodiversity surveys

Prof Taylor is a research fellow of the National Geographic Okavango Wilderness Project, and the bat discovery took place during expeditions under the patronage of the Angolan government, the Wild Bird Trust, and the National Geographic Okavango Wilderness Project. He said the aim of the expedition was to explore the plants and animals of a wilderness area (the source of the Okavango) that had not been explored before.

The discovery also led to their paper being published in the scientific journal, the Zoological Journal of the Linnean Society, this month. 

The publication, titled Integrative taxonomic analysis of new collections from the central Angolan highlands resolves the taxonomy of African pipistrelloid bats on a continental scale, showcases the importance of integrative taxonomy, local collaboration, and biodiversity surveys, as the description of this exciting new species would not have been possible without comparative genetic and morphological material from new collections in the poorly sampled central highlands of Angola. 
Prof Peter Taylor with his students, Veli Mdluli and Alexandra Howard
Prof Peter Taylor with his students, Veli Mdluli and Alexandra Howard, working on bat research. Howard was one of the co-authors of the paper. (Photo: Supplied)

Afromontane regions as hotspots of bat speciation, diversity, and micro-endemism

Although Prof Taylor is the first author to describe this new species, the work was done with a multidisciplinary team of colleagues, students, and collaborators from the UFS, UNESWA, the University of Pretoria, the University of Venda, and Stellenbosch University, as well as the Durban Natural Science Museum and the Ditsong National Museum of Natural History, with support from the Angolan government, the Wild Bird Trust, and the National Geographic Okavango Wilderness Project. 
“Describing a new species is an arduous task that can take years from discovery to publication. All the enormous collective efforts have shown the importance of collaborative biodiversity exploration using old and modern technologies, as well as the African ownership of this discovery,” Prof Taylor said.

Three of Prof Taylor's previous and current PhD students – all of them South African women – were part of this discovery process and are co-authors of the paper. All 14 co-authors in the team are African. Prof Taylor said the discovery adds a new species to the total bat list of 125 species for Southern Africa – at number 126.

News Archive

Inaugural lecture: Prof Robert Bragg, Dept. of Microbial, Biochemical and Food Biotechnology
2006-05-17



Attending the inaugural lecture were in front from the left Prof Robert Bragg (lecturer at the Department of Microbial, Biochemical and Food Biotechnology) and Frederick Fourie (Rector and Vice-Chancellor).  At the back from the left were Prof James du Preez (Departmental Chairperson:  Department of Microbial, Biochemical and Food Biotechnology) and Prof Herman van Schalkwyk (Dean: Faculty of Natural and Agricultural Sciences). Photo: Stephen Collett
 

A summary of an inaugural lecture delivered by Prof Robert Bragg at the University of the Free State:

CONTROL OF INFECTIOUS AVIAN DISEASES – LESSONS FOR MAN?

Prof Robert R Bragg
Department of Microbial, Biochemical and Food Biotechnology
University of the Free State

“Many of the lessons learnt in disease control in poultry will have application on human medicine,” said Prof Robert Bragg, lecturer at the University of the Free State’s (UFS) Department of Microbial, Biochemical and Food Biotechnology during his inaugural lecture.

Prof Bragg said the development of vaccines remains the main stay of disease control in humans as well as in avian species.  Disease control can not rely on vaccination alone and other disease-control options must be examined.  

“With the increasing problems of antibiotic resistance, the use of disinfection and bio security are becoming more important,” he said.

“Avian influenza (AI) is an example of a disease which can spread from birds to humans.  Hopefully this virus will not develop human to human transmission,” said Prof Bragg.

According to Prof Bragg, South Africa is not on the migration route of water birds, which are the main transmitters of AI.  “This makes South Africa one of the countries less likely to get the disease,” he said.

If the AI virus does develop human to human transmission, it could make the 1918 flu pandemic pale into insignificance.  During the 1918 flu pandemic, the virus had a mortality rate of only 3%, yet more than 50 million people died.

Although the AI virus has not developed human-to-human transmission, all human cases have been related to direct contact with infected birds. The mortality rate in humans who have contracted this virus is 67%.

“Apart from the obvious fears for the human population, this virus is a very serious poultry pathogen and can cause 100% mortality in poultry populations.  Poultry meat and egg production is the staple protein source in most countries around the world. The virus is currently devastating the poultry industry world-wide,” said Prof Bragg.

Prof Bragg’s research activities on avian diseases started off with the investigation of diseases in poultry.  “The average life cycle of a broiler chicken is 42 days.  After this short time, they are slaughtered.  As a result of the short generation time in poultry, one can observe changes in microbial populations as a result of the use of vaccines, antibiotics and disinfectants,” said Prof Bragg.   

“Much of my research effort has been directed towards the control of infectious coryza in layers, which is caused by the bacterium Avibacterium paragallinarum.  This disease is a type of sinusitis in the layer chickens and can cause a drop in egg product of up to 40%,” said Prof Bragg.

The vaccines used around the world in an attempt to control this disease are all inactivated vaccines. One of the most important points is the selection of the correct strains of the bacterium to use in the vaccine.

Prof Bragg established that in South Africa, there are four different serovars of the bacterium and one of these, the serovar C-3 strain, was believed to be unique to Southern Africa. He also recently discovered this serovar for the first time in Israel, thus indicating that this serovar might have a wider distribution than originally believed.

Vaccines used in this country did not contain this serovar.  Prof Bragg established that the long term use of vaccines not containing the local South African strain resulted in a shift in the population distribution of the pathogen.

Prof Bragg’s research activities also include disease control in parrots and pigeons.   “One of the main research projects in my group is on the disease in parrots caused by the circovirus Beak and Feather Disease virus. This virus causes serious problems in the parrot breeding industry in this country. This virus is also threatening the highly endangered and endemic Cape Parrot,” said Prof Bragg.

Prof Bragg’s research group is currently working on the development of a DNA vaccine which will assist in the control of the disease, not only in the parrot breeding industry, but also to help the highly endangered Cape Parrot in its battle for survival.

“Not all of our research efforts are directed towards infectious coryza or the Beak and Feather Disease virus.  One of my Masters students is currently investigating the cell receptors involved in the binding of Newcastle Disease virus to cancerous cells and normal cells of humans. This work will also eventually lead to a possible treatment of cancer in humans and will assist with the development of a recombinant vaccine for Newcastle disease virus,” said Prof Bragg.

We are also currently investigating an “unknown” virus which causes disease problems in poultry in the Western Cape,” said Prof Bragg.
 
“Although disinfection has been extensively used in the poultry industry, it has only been done at the pre-placement stage. In other words, disinfectants are used before the birds are placed into the house. Once the birds are placed, all use of disinfectants stops,” said Prof Bragg.

“Disinfection and bio security can be seen as the ‘Cinderella’ of disease control in poultry.  This is also true for human medicine. One just has to look at the high numbers of people who die from hospital-acquired infections to realise that disinfection is not a concept which is really clear in human health care,” said Prof Bragg.

Much research has been done in the control of diseases through vaccination and through the use of antibiotics. “These pillars of disease control are, however, starting to crumble and more effort is needed on disinfection and bio security,” said Prof Bragg.

Prof Bragg has been working in close co-operation with a chemical manufacturing company in Stellenbosch to develop a unique disinfectant which his highly effective yet not toxic to the birds.

As a result of this unique product, he has developed the continual disinfection program for use in poultry. In this program the disinfectant is used throughout the production cycle of the birds. It is also used to ensure that there is excellent pre-placement disinfection.

“The program is extensively used for the control of infectious diseases in the parrot-breeding industry in South Africa and the product has been registered in 15 countries around the world with registration in the USA in the final process,” said Prof Bragg.

“Although the problem of plasmid mediated resistance to disinfectants is starting to rear its ugly head, this has allowed for the opening of a new research field which my group will hopefully exploit in the near future,” he said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept