Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 October 2022 | Story NONSINDISO QWABE | Photo Rio Button
The Lowveld serotine bat, named Neoromicia hlandzeni
The Lowveld serotine bat, named Neoromicia hlandzeni.

Biological expeditions to the unexplored central highlands of Angola between 2016 and 2019 led to the discovery of a new tiny, white-thumbed bat species from Eswatini by Prof Peter John Taylor from the UFS Department of Zoology and Entomology and the Afromontane Research Unit (ARU), together with colleagues from the University of Eswatini (UNESWA) and other collaborators.

The bat species, named Neoromicia hlandzeni or the Lowveld serotine bat – after the Lowveld of Eswatini (eHlandzeni) – is the first new animal species to be discovered in Eswatini and given a siSwati name. The Lowveld serotine bat is tiny at four grams, has a distinctive white thumb pad, and occurs in Eswatini, South Africa, Zimbabwe, and Mozambique.

Bats make up a quarter of all mammalian biodiversity. With modern technology and the exploration of previously inaccessible regions of Africa, the rate of discovery of both animal and plant species is accelerating.

According to Prof Taylor, the Lowveld serotine bat is a new species to science. The specimen from which the species was named was collected in the lowlands of Eswatini in 2005. “Later collections of bats from the highlands of Angola, undertaken by myself and students, revealed the fact that the highland and lowland forms were actually different species. Since there was already a name for the highland bat, we needed to find a new name for the lowland bat from Eswatini and South Africa, hence it is called the Lowveld serotine bat,” he said.

The importance of integrative taxonomy, local collaboration, and biodiversity surveys

Prof Taylor is a research fellow of the National Geographic Okavango Wilderness Project, and the bat discovery took place during expeditions under the patronage of the Angolan government, the Wild Bird Trust, and the National Geographic Okavango Wilderness Project. He said the aim of the expedition was to explore the plants and animals of a wilderness area (the source of the Okavango) that had not been explored before.

The discovery also led to their paper being published in the scientific journal, the Zoological Journal of the Linnean Society, this month. 

The publication, titled Integrative taxonomic analysis of new collections from the central Angolan highlands resolves the taxonomy of African pipistrelloid bats on a continental scale, showcases the importance of integrative taxonomy, local collaboration, and biodiversity surveys, as the description of this exciting new species would not have been possible without comparative genetic and morphological material from new collections in the poorly sampled central highlands of Angola. 
Prof Peter Taylor with his students, Veli Mdluli and Alexandra Howard
Prof Peter Taylor with his students, Veli Mdluli and Alexandra Howard, working on bat research. Howard was one of the co-authors of the paper. (Photo: Supplied)

Afromontane regions as hotspots of bat speciation, diversity, and micro-endemism

Although Prof Taylor is the first author to describe this new species, the work was done with a multidisciplinary team of colleagues, students, and collaborators from the UFS, UNESWA, the University of Pretoria, the University of Venda, and Stellenbosch University, as well as the Durban Natural Science Museum and the Ditsong National Museum of Natural History, with support from the Angolan government, the Wild Bird Trust, and the National Geographic Okavango Wilderness Project. 
“Describing a new species is an arduous task that can take years from discovery to publication. All the enormous collective efforts have shown the importance of collaborative biodiversity exploration using old and modern technologies, as well as the African ownership of this discovery,” Prof Taylor said.

Three of Prof Taylor's previous and current PhD students – all of them South African women – were part of this discovery process and are co-authors of the paper. All 14 co-authors in the team are African. Prof Taylor said the discovery adds a new species to the total bat list of 125 species for Southern Africa – at number 126.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept