Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 October 2022 | Story Samkelo Fetile | Photo Supplied
Dr Sevias Guvurio
Dr Sevias Guvuriro.

Dr Sevias Guvuriro from the Faculty of Economic and Management Sciences at the University of the Free State (UFS) is the first UFS candidate to participate in the University of Michigan African Presidential Scholarship (UMAPS) fellowship programme. Dr Guvuriro is also a member of the Future Professoriate Group participating in the Transformation of the Professoriate Programme.  

About the project 

Dr Guvuriro’s main project during his five-month stay at the University of Michigan was on hazardous drinking and economic preferences among urban youth in South Africa. The project recognises that lifestyle behaviours in early life are important drivers of chronic disease later in life, and that harmful use of alcohol is among the main risk factors for non-communicable diseases in the world. According to Dr Guvuriro, persuasive behaviour-change approaches could be useful, especially in the context of developing countries, where the World Health Organisation’s non-communicable diseases ‘Best Buys’ interventions on alcohol use could be ineffective. Behavioural economics and experimental economics techniques could also be beneficial. "With the assistance of my host, Prof Erin Krupka from the University of Michigan School of Information, academics and other staff members, I have made very strong progress in analysing my survey and experimental data on the subject, which I obtained here in South Africa,” said Dr Guvuriro.

Unpacking UMAPS 

UMAPS offers African scholars drawn from across Africa the opportunity to spend five months at the University of Michigan, working and interacting with faculty members who are leaders in their fields. Each year, applications for the fellowship open on 15 August and close on 15 October. The programme started in 2009, hosting a single cohort each year. From 2020, the programme hosted two cohorts of about 15 African scholars each. These scholars are selected annually from an application pool of about 600. 

"It was an amazing experience, one that I wish all of my colleagues in the faculty and the institution at large could have," Dr Guvuriro said. “Other than meeting the faculty staff at the University of Michigan – who are amazing – I got to meet and interact with world leaders in the economics subdiscipline of my interest.” 

He concluded by stating that this is a rare opportunity for scholars, and although competitive, he believes it is worth applying for. “Although I was the first from the UFS to attend, I know that the August to December 2022 cohort has another UFS staff member, which is great. My wish would be for our university to be represented annually.”

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept