Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 October 2022 | Story Samkelo Fetile | Photo Supplied
Dr Sevias Guvurio
Dr Sevias Guvuriro.

Dr Sevias Guvuriro from the Faculty of Economic and Management Sciences at the University of the Free State (UFS) is the first UFS candidate to participate in the University of Michigan African Presidential Scholarship (UMAPS) fellowship programme. Dr Guvuriro is also a member of the Future Professoriate Group participating in the Transformation of the Professoriate Programme.  

About the project 

Dr Guvuriro’s main project during his five-month stay at the University of Michigan was on hazardous drinking and economic preferences among urban youth in South Africa. The project recognises that lifestyle behaviours in early life are important drivers of chronic disease later in life, and that harmful use of alcohol is among the main risk factors for non-communicable diseases in the world. According to Dr Guvuriro, persuasive behaviour-change approaches could be useful, especially in the context of developing countries, where the World Health Organisation’s non-communicable diseases ‘Best Buys’ interventions on alcohol use could be ineffective. Behavioural economics and experimental economics techniques could also be beneficial. "With the assistance of my host, Prof Erin Krupka from the University of Michigan School of Information, academics and other staff members, I have made very strong progress in analysing my survey and experimental data on the subject, which I obtained here in South Africa,” said Dr Guvuriro.

Unpacking UMAPS 

UMAPS offers African scholars drawn from across Africa the opportunity to spend five months at the University of Michigan, working and interacting with faculty members who are leaders in their fields. Each year, applications for the fellowship open on 15 August and close on 15 October. The programme started in 2009, hosting a single cohort each year. From 2020, the programme hosted two cohorts of about 15 African scholars each. These scholars are selected annually from an application pool of about 600. 

"It was an amazing experience, one that I wish all of my colleagues in the faculty and the institution at large could have," Dr Guvuriro said. “Other than meeting the faculty staff at the University of Michigan – who are amazing – I got to meet and interact with world leaders in the economics subdiscipline of my interest.” 

He concluded by stating that this is a rare opportunity for scholars, and although competitive, he believes it is worth applying for. “Although I was the first from the UFS to attend, I know that the August to December 2022 cohort has another UFS staff member, which is great. My wish would be for our university to be represented annually.”

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept