Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 October 2022 | Story Samkelo Fetile | Photo Supplied
Dr Sevias Guvurio
Dr Sevias Guvuriro.

Dr Sevias Guvuriro from the Faculty of Economic and Management Sciences at the University of the Free State (UFS) is the first UFS candidate to participate in the University of Michigan African Presidential Scholarship (UMAPS) fellowship programme. Dr Guvuriro is also a member of the Future Professoriate Group participating in the Transformation of the Professoriate Programme.  

About the project 

Dr Guvuriro’s main project during his five-month stay at the University of Michigan was on hazardous drinking and economic preferences among urban youth in South Africa. The project recognises that lifestyle behaviours in early life are important drivers of chronic disease later in life, and that harmful use of alcohol is among the main risk factors for non-communicable diseases in the world. According to Dr Guvuriro, persuasive behaviour-change approaches could be useful, especially in the context of developing countries, where the World Health Organisation’s non-communicable diseases ‘Best Buys’ interventions on alcohol use could be ineffective. Behavioural economics and experimental economics techniques could also be beneficial. "With the assistance of my host, Prof Erin Krupka from the University of Michigan School of Information, academics and other staff members, I have made very strong progress in analysing my survey and experimental data on the subject, which I obtained here in South Africa,” said Dr Guvuriro.

Unpacking UMAPS 

UMAPS offers African scholars drawn from across Africa the opportunity to spend five months at the University of Michigan, working and interacting with faculty members who are leaders in their fields. Each year, applications for the fellowship open on 15 August and close on 15 October. The programme started in 2009, hosting a single cohort each year. From 2020, the programme hosted two cohorts of about 15 African scholars each. These scholars are selected annually from an application pool of about 600. 

"It was an amazing experience, one that I wish all of my colleagues in the faculty and the institution at large could have," Dr Guvuriro said. “Other than meeting the faculty staff at the University of Michigan – who are amazing – I got to meet and interact with world leaders in the economics subdiscipline of my interest.” 

He concluded by stating that this is a rare opportunity for scholars, and although competitive, he believes it is worth applying for. “Although I was the first from the UFS to attend, I know that the August to December 2022 cohort has another UFS staff member, which is great. My wish would be for our university to be represented annually.”

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept