Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 October 2022 | Story Samkelo Fetile | Photo Supplied
Dr Sevias Guvurio
Dr Sevias Guvuriro.

Dr Sevias Guvuriro from the Faculty of Economic and Management Sciences at the University of the Free State (UFS) is the first UFS candidate to participate in the University of Michigan African Presidential Scholarship (UMAPS) fellowship programme. Dr Guvuriro is also a member of the Future Professoriate Group participating in the Transformation of the Professoriate Programme.  

About the project 

Dr Guvuriro’s main project during his five-month stay at the University of Michigan was on hazardous drinking and economic preferences among urban youth in South Africa. The project recognises that lifestyle behaviours in early life are important drivers of chronic disease later in life, and that harmful use of alcohol is among the main risk factors for non-communicable diseases in the world. According to Dr Guvuriro, persuasive behaviour-change approaches could be useful, especially in the context of developing countries, where the World Health Organisation’s non-communicable diseases ‘Best Buys’ interventions on alcohol use could be ineffective. Behavioural economics and experimental economics techniques could also be beneficial. "With the assistance of my host, Prof Erin Krupka from the University of Michigan School of Information, academics and other staff members, I have made very strong progress in analysing my survey and experimental data on the subject, which I obtained here in South Africa,” said Dr Guvuriro.

Unpacking UMAPS 

UMAPS offers African scholars drawn from across Africa the opportunity to spend five months at the University of Michigan, working and interacting with faculty members who are leaders in their fields. Each year, applications for the fellowship open on 15 August and close on 15 October. The programme started in 2009, hosting a single cohort each year. From 2020, the programme hosted two cohorts of about 15 African scholars each. These scholars are selected annually from an application pool of about 600. 

"It was an amazing experience, one that I wish all of my colleagues in the faculty and the institution at large could have," Dr Guvuriro said. “Other than meeting the faculty staff at the University of Michigan – who are amazing – I got to meet and interact with world leaders in the economics subdiscipline of my interest.” 

He concluded by stating that this is a rare opportunity for scholars, and although competitive, he believes it is worth applying for. “Although I was the first from the UFS to attend, I know that the August to December 2022 cohort has another UFS staff member, which is great. My wish would be for our university to be represented annually.”

News Archive

Einstein's gravitational waves as creative as Bach's music, says UFS physicist
2016-02-19

Description: Gravitational waves  Tags: Gravitational waves

Profile of the gravitational waves of the colliding black holes.

Prof Pieter Meintjes, Affiliated Researcher in the Department of Physics at the University of the Free State, welcomed the work done by the Laser Interferometer Gravitational-Wave Observatory (LIGO) science team.
 
For the first time, researchers from two of the American Ligo centres, in Washington and Louisiana respectively, observed gravitational waves directly, 100 years after Albert Einstein said they existed. "My study field in astrophysics involves relativistic systems. Therefore, Einstein's view of gravity is crucial to me. I consider the theory as the highest form of human creativity - just like the music of JS Bach. Over the past 100 years, the theory has been tested through various experiments and in different ways.
 
“The discovery of gravitational waves was the last hurdle to overcome in making this absolutely unfaltering. I am therefore thrilled by the discovery. It is absolutely astounding to imagine that the equations used to make the predictions about the gravitational-wave emissions when two gravitational whirlpools collide - as discovered on 14 September 2015 by LIGO - are basically Einstein's original equations that were published way back in 1916 - in other words, 100 years ago.
 
“The LIGO detectors have been operational since the early 1990s, but they had to undergo several stages of upgrades before being sensitive enough to make detections. LIGO is currently in its final stage, and is expected to function at optimal sensitivity only within a year or two. To be able to conduct the measurements at this stage is therefore a fantastic achievement, since much more funding will certainly be deposited in the project,” Prof Meintjes says.

Description: Prof Pieter Meintjes Tags: Prof Pieter Meintjes

Prof Pieter Meintjes
Photo: Charl Devenish

The search for gravitational waves by means of the Square Kilometre Array (SKA) is one of the focus points in research by both Prof Meintjes and PhD student, Jacques Maritz. This involves the study of radio signals from pulsars that might show signs of effects by gravitational waves. They are looking for signs of gravitational waves. The gravitational waves discovered and studied in this manner would naturally vary much more slowly than the signal discovered from the two colliding gravitational waves.
 
The discovery will definitely provide renewed impetus to the Square Kilometre Array (SKA) Project to use the dispersion of pulsar signals, and to search for the impact of gravitational waves on signals as they travel through the universe. According to Prof Meintjes, the SKA will definitely contribute fundamentally to the Frontier research, which will provide a good deal of publicity for the UFS and South Africa, if significant contributions are made by local researchers in this field.

Video clip explaining gravitational waves

 

  • The Department of Physics will present a general, non-technical talk concerning the recent detection of gravitational waves by the 2 Laser Interferometer Gravitational Wave Observatories (LIGO):

Wednesday 24 February 2016
11:00-12:00
New lecture auditorium, Department of Physics

 

 

 

 

 

 

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept