Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 September 2022 | Story Anthony Mthembu | Photo iFlair Photography
Umakhoyane
Umakhoyane: Indigenous South African instrument affiliated with the Zulu tribe.

According to Dr Absolum Nkosi, Senior Lecturer in the Odeion School of Music at the University of the Free State (UFS), “ancient traditional instruments form part of the African heritage”. As such, with Heritage Day upon us, it is imperative to highlight these South African indigenous musical instruments. 

Some of the most prominent South African musical instruments currently in the possession of the UFS, include uhadi and umakhoyane, also referred to as ugubhu. At first glance, one would think that these instruments are the same. This would not be an incorrect assumption. In fact, these instruments share similarities in terms of purpose and how they have been used throughout their existence. 

Similarities and differences between the instruments
For instance, both uhadi and umakhoyane (ugubhu) are instruments traditionally played by women. Dr Nkosi maintains that songs accompanied by any of these instruments are usually personal, as they cover topics such as love, family, and relationships. Furthermore, the songs that were sung with the assistance of these instruments, were also about a reflection of the individual’s mental state. As such, the fact that both instruments have a very soft sound aided in that reflective process. 

However, there are key variations between these instruments. Uhadi is a single-string acoustic bow affiliated with the Xhosa tribe, whereas umakhoyane is a single-string acoustic bow affiliated with the Zulu tribe. In addition, umakhoyane possesses a bridge in the middle that uhadi does not. Furthermore, there is also a difference in the sound produced by the two instruments. “Uhadi produces one sound when it is played with the string openly without touching it; you can then get the second sound by pinching and releasing the string using the index finger and a thumb. However, umakhoyane produces two notes when playing the string on the upper and the lower level. The bridge in the middle of the string divides it into an upper part (low tone) and a lower part (high tone),” Dr Nkosi indicated.  

It is imperative to note that these instruments have adapted over time. In fact, they have been used in genres such as Jazz and contemporary Afro music. Therefore, Dr Nkosi believes that the preservation of these indigenous instruments is essential, as it keeps the African musical identity alive. 

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept