Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 September 2022 | Story Anthony Mthembu | Photo iFlair Photography
Umakhoyane
Umakhoyane: Indigenous South African instrument affiliated with the Zulu tribe.

According to Dr Absolum Nkosi, Senior Lecturer in the Odeion School of Music at the University of the Free State (UFS), “ancient traditional instruments form part of the African heritage”. As such, with Heritage Day upon us, it is imperative to highlight these South African indigenous musical instruments. 

Some of the most prominent South African musical instruments currently in the possession of the UFS, include uhadi and umakhoyane, also referred to as ugubhu. At first glance, one would think that these instruments are the same. This would not be an incorrect assumption. In fact, these instruments share similarities in terms of purpose and how they have been used throughout their existence. 

Similarities and differences between the instruments
For instance, both uhadi and umakhoyane (ugubhu) are instruments traditionally played by women. Dr Nkosi maintains that songs accompanied by any of these instruments are usually personal, as they cover topics such as love, family, and relationships. Furthermore, the songs that were sung with the assistance of these instruments, were also about a reflection of the individual’s mental state. As such, the fact that both instruments have a very soft sound aided in that reflective process. 

However, there are key variations between these instruments. Uhadi is a single-string acoustic bow affiliated with the Xhosa tribe, whereas umakhoyane is a single-string acoustic bow affiliated with the Zulu tribe. In addition, umakhoyane possesses a bridge in the middle that uhadi does not. Furthermore, there is also a difference in the sound produced by the two instruments. “Uhadi produces one sound when it is played with the string openly without touching it; you can then get the second sound by pinching and releasing the string using the index finger and a thumb. However, umakhoyane produces two notes when playing the string on the upper and the lower level. The bridge in the middle of the string divides it into an upper part (low tone) and a lower part (high tone),” Dr Nkosi indicated.  

It is imperative to note that these instruments have adapted over time. In fact, they have been used in genres such as Jazz and contemporary Afro music. Therefore, Dr Nkosi believes that the preservation of these indigenous instruments is essential, as it keeps the African musical identity alive. 

News Archive

Einstein's gravitational waves as creative as Bach's music, says UFS physicist
2016-02-19

Description: Gravitational waves  Tags: Gravitational waves

Profile of the gravitational waves of the colliding black holes.

Prof Pieter Meintjes, Affiliated Researcher in the Department of Physics at the University of the Free State, welcomed the work done by the Laser Interferometer Gravitational-Wave Observatory (LIGO) science team.
 
For the first time, researchers from two of the American Ligo centres, in Washington and Louisiana respectively, observed gravitational waves directly, 100 years after Albert Einstein said they existed. "My study field in astrophysics involves relativistic systems. Therefore, Einstein's view of gravity is crucial to me. I consider the theory as the highest form of human creativity - just like the music of JS Bach. Over the past 100 years, the theory has been tested through various experiments and in different ways.
 
“The discovery of gravitational waves was the last hurdle to overcome in making this absolutely unfaltering. I am therefore thrilled by the discovery. It is absolutely astounding to imagine that the equations used to make the predictions about the gravitational-wave emissions when two gravitational whirlpools collide - as discovered on 14 September 2015 by LIGO - are basically Einstein's original equations that were published way back in 1916 - in other words, 100 years ago.
 
“The LIGO detectors have been operational since the early 1990s, but they had to undergo several stages of upgrades before being sensitive enough to make detections. LIGO is currently in its final stage, and is expected to function at optimal sensitivity only within a year or two. To be able to conduct the measurements at this stage is therefore a fantastic achievement, since much more funding will certainly be deposited in the project,” Prof Meintjes says.

Description: Prof Pieter Meintjes Tags: Prof Pieter Meintjes

Prof Pieter Meintjes
Photo: Charl Devenish

The search for gravitational waves by means of the Square Kilometre Array (SKA) is one of the focus points in research by both Prof Meintjes and PhD student, Jacques Maritz. This involves the study of radio signals from pulsars that might show signs of effects by gravitational waves. They are looking for signs of gravitational waves. The gravitational waves discovered and studied in this manner would naturally vary much more slowly than the signal discovered from the two colliding gravitational waves.
 
The discovery will definitely provide renewed impetus to the Square Kilometre Array (SKA) Project to use the dispersion of pulsar signals, and to search for the impact of gravitational waves on signals as they travel through the universe. According to Prof Meintjes, the SKA will definitely contribute fundamentally to the Frontier research, which will provide a good deal of publicity for the UFS and South Africa, if significant contributions are made by local researchers in this field.

Video clip explaining gravitational waves

 

  • The Department of Physics will present a general, non-technical talk concerning the recent detection of gravitational waves by the 2 Laser Interferometer Gravitational Wave Observatories (LIGO):

Wednesday 24 February 2016
11:00-12:00
New lecture auditorium, Department of Physics

 

 

 

 

 

 

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept