Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 September 2022 | Story Jóhann Thormählen | Photo iStock
Cervical cancer awareness ribbon
Cervical Cancer Awareness Month is observed in September in South Africa to encourage women to go for screening to prevent it.

Cervical cancer is the second most common cancer among women in South Africa, and many die from it each year – but it can be prevented.

According to Dr Arina Meyer, medical practitioner in Kovsie Health at the University of the Free State, this is one of the reasons why it is important to be informed, take precautions, and raise awareness about the disease.

Cervical Cancer Awareness Month is observed in September in South Africa with the aim of encouraging women to go for screening to prevent it.

Although medical statistics paint a bleak picture, Meyer says there is hope. “It is important to know that cervical cancer can be prevented. And when it is diagnosed early, it can be treated.”

Statistics and causes

According to her, figures show the occurrence of cervical cancer to be between 22,8 and 27 per 100 000 women in South Africa. 

“More than 5 700 new cases are reported each year, as well as more than 3 000 deaths. Cervical cancer is the second most common cancer – after skin cancer – in South Africa.”

Meyer says when one look at these numbers, it is important to commemorate Cervical Cancer Awareness Month, as women need to be informed about their annual check-up, possible symptoms, and signs of the cancer.

Most cervical cancers are caused by the human papillomavirus (HPV), which is transmitted through sexual contact. Therefore, the HPV is seen as a sexually transmitted disease.

“There are different types of HPV. Some cause cervical cancer and other genital warts. One can develop one or both conditions, depending on the type of virus you have,” says Meyer.

Prevention and reducing the risk

According to her, preventative action is the best method. Going for a cervical screening every year when you become sexually active, such as a Pap smear or Pap test, will help in the early detection and removal of abnormal cells.

There is also a vaccine for protection against HPV, which is available from the age of nine. Meyer says there are two vaccines in South Africa.

“By getting the vaccine early, before any sexual activity, the spread of HPV – and therefore cervical cancer – can be prevented. Up to 90% of cancers can be prevented.
“Unfortunately, if someone has already been infected by the HPV, it cannot be treated by the vaccine.”

The UFS medical practitioner says the best ways to reduce the risk of cervical cancer are to go for an annual Pap smear, a follow-up after an abnormal test result, the vaccine, safe sex, and to stop smoking.

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept