Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 September 2022 | Story Rulanzen Martin | Photo Rulanzen Martin
Donovan Wright
Donovan Wright is currently pursuing his PhD in South African Sign Language linguistics at the UFS.

Donovan Wright recently joined the University of the Free State (UFS) as a lecturer in the Department of South African Sign Language (SASL) and Deaf Studies. As a passionate young academic, Wright ‘found his love’ for SASL during his undergraduate years at the University of the Witwatersrand (Wits). 

In 2016, for the fulfilment of his master’s degree at Wits, Wright completed a thesis titled ‘A preliminary description of South African Sign Language syntax’. He is currently pursuing his PhD at Wits, and his research interests lie in the linguistics of SASL, which became his focus during his postgraduate studies. In his PhD research he focuses on (particular) constructions within SASL and how to best describe and analyse them. “I chose to use an approach to language and grammar not tied to how we perceive and understand spoken languages,” he says. 

‘Teaching SASL is my great passion’

His appointment as a SASL lecturer at the UFS is a fulfilment of his passion for teaching. “Sign languages are commonly misunderstood and thought to be pantomime or gesture,” he says.  “These common misconceptions are the first topic we tackle – whether by linguistic or social argument.” As a SASL linguistics lecturer he says it’s this aspect of the modules that is so rewarding, especially “seeing students realise something new about a sign they already know and have been using. Learning about language while learning a language has its benefits.” 

Empowering students is about access

Wright says access to education is a fundamental right for every student, and that empowering Deaf scholars will ultimately improve how Deaf students access information at universities and elsewhere. “While many students attend university and access their education in a language that is not their mother tongue, Deaf students using SASL are additionally learning across modalities.” 

September is designated as Deaf Awareness Month, with one important aim being to highlight and improve sign language education. The Department of South African Sign Language and Deaf Studies has planned numerous events and initiatives during this month, which will raise awareness and provide community education by visiting schools.  

“The next step is ensuring an environment in which Deaf students who choose to pursue a career in academia are not hindered. Our Deaf students are our future Deaf academics,” Wright says. 

• Members of the Department of South African Sign Language and Deaf Studies will, among other planned events, provide community interpreting services and visit schools in surrounding areas. This year the department is launching a university ‘Deaf Space’ where students, staff, or anyone wishing to engage in SASL can interact, provided you ‘leave your voice at the door’. 


News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept