Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 September 2022 | Story Rulanzen Martin | Photo Rulanzen Martin
Donovan Wright
Donovan Wright is currently pursuing his PhD in South African Sign Language linguistics at the UFS.

Donovan Wright recently joined the University of the Free State (UFS) as a lecturer in the Department of South African Sign Language (SASL) and Deaf Studies. As a passionate young academic, Wright ‘found his love’ for SASL during his undergraduate years at the University of the Witwatersrand (Wits). 

In 2016, for the fulfilment of his master’s degree at Wits, Wright completed a thesis titled ‘A preliminary description of South African Sign Language syntax’. He is currently pursuing his PhD at Wits, and his research interests lie in the linguistics of SASL, which became his focus during his postgraduate studies. In his PhD research he focuses on (particular) constructions within SASL and how to best describe and analyse them. “I chose to use an approach to language and grammar not tied to how we perceive and understand spoken languages,” he says. 

‘Teaching SASL is my great passion’

His appointment as a SASL lecturer at the UFS is a fulfilment of his passion for teaching. “Sign languages are commonly misunderstood and thought to be pantomime or gesture,” he says.  “These common misconceptions are the first topic we tackle – whether by linguistic or social argument.” As a SASL linguistics lecturer he says it’s this aspect of the modules that is so rewarding, especially “seeing students realise something new about a sign they already know and have been using. Learning about language while learning a language has its benefits.” 

Empowering students is about access

Wright says access to education is a fundamental right for every student, and that empowering Deaf scholars will ultimately improve how Deaf students access information at universities and elsewhere. “While many students attend university and access their education in a language that is not their mother tongue, Deaf students using SASL are additionally learning across modalities.” 

September is designated as Deaf Awareness Month, with one important aim being to highlight and improve sign language education. The Department of South African Sign Language and Deaf Studies has planned numerous events and initiatives during this month, which will raise awareness and provide community education by visiting schools.  

“The next step is ensuring an environment in which Deaf students who choose to pursue a career in academia are not hindered. Our Deaf students are our future Deaf academics,” Wright says. 

• Members of the Department of South African Sign Language and Deaf Studies will, among other planned events, provide community interpreting services and visit schools in surrounding areas. This year the department is launching a university ‘Deaf Space’ where students, staff, or anyone wishing to engage in SASL can interact, provided you ‘leave your voice at the door’. 


News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept