Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 September 2022 | Story André Damons | Photo André Damons
Sithembiso Ndlovu
Sithembiso Ndlovu is a lecturer in the Dean’s Office, Faculty of Health Sciences who recently completed his research into the impact the COVID-19 pandemic had on gender-based violence (GBV) among women.

A lecturer at the University of the Free State (UFS) Faculty of Health Sciences hopes his research into the impact the COVID-19 pandemic had on gender-based violence (GBV) among women, could assist the victims and especially government and organisations to address this evil post-COVID-19. 

Sithembiso Ndlovu, a Public Health Lecturer in the Division of Public Health, Office of the Dean of Health Sciences, says this research was a narrative review paper which aimed to explore the impact of the COVID-19 pandemic on GBV among women since there is inadequate established literature on this topic, particularly in South Africa. The focus was on intimate partner violence.

He started working on the review in February 2021 and finished in August the same year where after the paper was published by the African Journal of Reproductive Health (AJRH) in July 2022. He says he believes his research aligns with the UFS narrative of creating opportunities and growth through leading, learning and teaching, focused research, and impactful engagement with society given the quality of the research that his review upholds. 

Looking at the state and impact of GBV

Says Ndlovu: “I believe my research will be impactful in academia and in the lives of women who experienced GBV during lockdown. The study will also be impactful to women who will experience GBV in the future through recommended interventions, which I believe government departments and various GBV-oriented organisations can adopt to curb the increase in GBV cases in the country post-COVID-19 pandemic. 

”All in all, the research expresses the notion of care for the well-being of South African women who are voiceless or powerless and thus creates an opportunity for them to be able to seek help.”

The researcher says he wanted to look at the state and impact of GBV among women during the pandemic in the South African context and lay a foundation for prospective interventions to mitigate the increase of GBV cases during the lockdown. He envisages government departments and local organisations that deal with issues relating to GBV to consider the proposed interventions. 

“Also, it remains vital to engage men on the importance of GBV and the role they can play in decreasing the prevalence of this second pandemic after the COVID-19 as President Cyril Ramaphosa noted,” says Ndlovu.

According to him, without proper and accessible support, there will always be an increased risk of victimisation, even in households where there was no violence before the lockdown. Multipronged and all-inclusive intervention strategies are needed to address the prevalence of GBV cases effectively and sufficiently in South Africa. 

What does the research show? 

Ndlovu says the research found that there are multiple factors that contributed to the surge in GBV cases in South Africa, including alcohol availability and consumption, job losses, financial dependence, psychological distress, and emotional imbalances during the lockdown. During the restrictive lockdown, women were more exposed to the aggressors at home, where varying hostile power dynamics prevail, leaving the victims with limited opportunity to find any potential help and support due to limited mobility.

“When I was drafting the paper, there was limited literature on GBV during COVID-19 and comparing and contrasting statistics between the two periods was challenging. At the start of lockdown in March 2020, 87 000 cases of GBV and interpersonal violence were reported, a significant increase compared to pre-COVID-19. 

“However, the reports did not specify the type of interpersonal violence, and GBV reported or the gender of the aggressor although it has been widely reported that male partners perpetrate most IPV.” 

Interventions

Ndlovu wrote in the research article that key intervention strategies in combating GBV and ensuring that victims are supported adequately include dialogues and interventions around high-level communication and behaviour change programmes, prioritisation of reported cases, and developing interventions tailored to respond to the economically vulnerable circumstances women encounter. 

“There should be an emergency strengthening of the support systems that could be utilised by women experiencing violence and who are planning to escape the violent environment during regulated lockdown curfew periods in South Africa.

“Interventions should also include denormalising violence against women by their male counterparts and men in general. This could be implemented through educational programmes in communities, including schools where violence is prevalent. In this regard, an evaluation study on a school violence programme in Tshwane found that the programme increased positive knowledge of violence and attitudes toward violence. The recommended services must also be offered in all South African official languages to ensure that information is received and understood extensively,” he wrote. 

GBV-related programmes need to be prioritised in every sector and government department. This would necessitate realistic measures and activities to ensure impact. Governments must collaborate with various organisations to derive interventions by eliminating factors contributing to a surge in GBV cases. 

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept