Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 September 2022 | Story Rulanzen Martin | Photo Rulanzen Martin
Bartimea school outreach
Annemarie Le Roux and two of the learners from the Bartimea School for the Deaf and Blind.

It was a perfect Spring Day with laughter, cupcakes, and the brightest smiles on excited little faces of learners from the Bartimea School for the Deaf and Blind in front of the Main Building of the Bloemfontein Campus of the University of the Free State (UFS). The UFS Department of Deaf Studies and South African Sign Language hosted the school on 1 September 2022 for a day of learning, fun, and lots of games to kickstart #DeafAwarenessMonth. 

The relationship between the department and the school is stronger than ever, and after a two-year hiatus both staff and learners were basking in the excitement of the day. The school faced closure back in 2016 and it was in this year that the department and the student group Signals started a project to visit the school, which saw them participate in different activities with the learners. “We helped the school with the cleaning up of the school grounds and painting the playgrounds,” said Annemarie Le Roux, South African Sign Language lecturer at the UFS. 

UFS could set blueprint for outreach to Deaf communities 

The department and the UFS are in a unique position to set a blueprint for engaged scholarship with the Bartimea school in Thaba ’Nchu and the Thiboloha School for the Deaf and Blind in Phuthaditjhaba (formerly Qwaqwa). 

The Bartimea outreach is an important project for the department because it not only enables the students to put their teachings into practice but also demonstrates the engaged scholarship mandate of the UFS. Le Roux believes more teachers should be able to use SASL in schools, and the UFS could facilitate such training opportunities. “It would be wonderful if the university and the school could work together in engaged teaching and learning.” She added that leaners at the two schools sometimes do not get all the information they need when applying to universities. 

Le Roux thinks the relationship between Bartimea and the department could enable meaningful action to foster engaged citizenship. “We can help with fundraising, because the school is always in need of funding, as most parents cannot contribute to helping the school.” 

Putting teaching excellence into practice

This engagement with Bartimea allows students to put what they have learned in lecture halls into practice. “Students who attend the visits to the school or the school to the university understand more about the culture, and want to learn more and develop their language skills,” Le Roux said. “Before the COVID-19 pandemic we took our third-year and honours students to the school to give them access to the Deaf community.” Furthermore, the engagement helps students gain a better understanding of Deaf culture and sign language.

Also visit our Deaf Awareness Month webpage for more information.  

 

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept