Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

Award-winning architect firm presents the 29th Sophia Gray Memorial Lecture and Exhibition
2017-09-07

  Description: Arch break Tags: Sophia Gray Memorial Lecture and Exhibition, Elphick Proome Architects, South African Institute of Architects

At the Sophia Gray Bursary Fund breakfast, were from the left:
Henry Pretorius, head of the UFS Department of Architecture,
AJ Corbett, and Boipelo Morule, third-year student
in Architecture and Prof Francis Petersen, UFS Rector
and Vice-Chancellor, 
at the UFS
Photo: Stephen Collett

The laureates of this year’s Sophia Gray Memorial Lecture were George Elphick and Nicholas Proome from the award-winning architecture firm, Elphick Proome Architects (EPA). Over the past 28 years this Durban firm has received 26 awards and its work has been published in 26 magazines.  

From bedroom to boardroom
EPA is involved in major corporate architecture as well as several residential projects. It believes that good design is produced from careful study and research combined with sound technical knowledge and artistic judgement. At the 29th Sophia Gray lecture, presented by the Department of Architecture at the University of the Free State, EPA addressed the Bloemfontein community, stating that architecture was about people, space and light. 

For EPA, architecture is the form of art with the most impact on society. “Ultimately, our architecture needs to be enjoyed and be hard to forget,” it said. 

In its three decades of practice, most of EPA’s built work has been executed in South Africa. It has also completed projects beyond South African borders, including Mozambique, Kenya, Ghana, and France. 

The lecture was followed by the opening of the 29th Sophia Gray Memorial Exhibition at Oliewenhuis Art Museum.

New PhD in Architecture with Design announced
A highlight at this year’s lecture was the announcement by Henry Pretorius, the head of the department, of a new and innovative doctoral programme, the PhD in Architecture with Design. From 2018, students with a MArch (professional) or MArch can enrol for this postgraduate qualification.

“The programme recognises the intelligence and ingenuity of design. Its primary objective is to harvest and study the implicit orientations, operations, and achievements of design, and to enlist creativity in the formation of new knowledge. The degree facilitates analytical reflection, stimulates creative action, and opens new insights into the unique logic of design,” said Pretorius.

“Although design-based research has gained international momentum in recent years, similar research has not been done in South Africa until now.”

Contribution to the Sophia Gray Bursary Fund 
During a breakfast function, the department also announced another initiative, the Sophia Gray Bursary Fund. Prof Francis Petersen, Rector and Vice-Chancellor at the UFS, said that the type of architecture in developing countries was different from places such as New York and other big cities in developed countries. For a transformed profession we need architects from different cultures and demographics in the system. The bursary fund was a fantastic starting point for this to happen. 

The Sophia Gray Bursary Fund initiative is part of a greater call to alumni and friends of the department to be actively involved in the department’s continuous development and future endeavours towards imagination, care, and excellence.
AJ Corbett, founder and director of TCN Architects in East London, made the first contribution towards the fund. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept