Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

Grant encourages and enables more learners to enter into science-related studies and careers
2009-06-26

 
At the launch are, from the left, front: Consolation Mochusi, Graad 12 learner from Heatherdale Secondary School, Alexander Bergman, Grade 10 learner from Grey College Secondary School, Danél Prinsloo, Grade 11 learner from Eunice High School; middle: Ms Lea Koenig, Coordinator: ICT Laboratory of the Qwaqwa Campus, Prof. Daniela Coetzee-Manning, Director: CED; back: Ms Elna Fourie, Development Planner from SANRAL, Prof. Teuns Verschoor, Acting Rector of the UFS, Mr Cobus van Breda, Project Coordinator: CED and Mr Nazir Alli, Chief Executive Officer of SANRAL.
Photo: Stephen Collett


 

The University of the Free State’s (UFS) Centre for Education Development (CED) has this week launched a project on the Main Campus in Bloemfontein.
to enable and encourage more learners to enter into science-related studies and careers.

The grant of R4,5 million over a period of three years was made by the South African National Roads Agency Ltd (SANRAL). This week’s function was attended by the representatives of the sponsors and the UFS, as well as learners, parents, principals and Physical Sciences teachers of participating schools.

The grant will be utilised to foster a positive attitude towards Mathematics and Science amongst learners in the early school years as well as raising the knowledge and skills levels of learners in the Further Education and Training (FET) Phase. “This will be done through our Family Math and Family Science Programme for younger learners and through e-Education in Science and Mathematics for learners in the FET Phase,” said Mr Cobus van Breda, Project Coordinator at the CED.

About 330 selected Grade 10, 11 and 12 learners from 16 schools in the Free State are attending Physical Sciences and Mathematics sessions during weekdays at the ICT Laboratories on the Main and Qwaqwa Campuses of the UFS. In order to make provision for the needs of generation Y-learners (techno-clever generation), the project envisages to enhance their understanding of Science and Mathematics principles by utilising the advantages of ICTs (Information and Communication Technologies) during the sessions.

On average, learners attend four sessions per term, with one of the sessions a special event like visiting Boyden Observatory, departments at the UFS, etc. Learners will be exposed to about 36 sessions over the three years. Special attention to vocational guidance, in collaboration with the Unit for Prospective Students at the UFS, forms part of the support system of the programme to participating learners.

“Learning is a life-long experience and we must encourage our learners to grab this opportunity to learn more about important fields such as Mathematics and Science. It is a privilege for SANRAL to have this partnership with the CED and the university as it is an indication of our efforts to educate our youth,” said Mr Nazir Alli, Chief Executive Officer of SANRAL.

Mr Alli encouraged learners to grab the opportunity to learn and to make the field of science their career. “Science can be the foundation on which to build your career and this programme can assist you to reach your goal,” he said.

According to Prof. Teuns Verschoor, Acting Rector of the UFS, the SANRAL grant is a wise investment because it is an educational investment. “We cannot cut back on the investments we make in education and SANRAL’s investment in this programme is of benefit to schools and learners in the central region. Through this programme, its bursaries, various career opportunities and ongoing support of schools and universities SANRAL is making a huge contribution to promoting science-related studies and careers in our country,” he said.

Media Release
Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
26 June 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept